Skip to main content
Log in

HEVC quantization parameter selection algorithm based on inter-frame dependency

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Massive inter predictive modes are adopted in latest High Efficiency Video Coding (HEVC) standard to eliminate temporal redundancies, which results in stronger inter-frame dependency among neighboring frames than previous standards like H.264. The inter-frame dependency makes currently independent rate-distortion optimization (RDO) non-optimal any more. Quantization parameter (QP) selection algorithm taking inter-frame dependency into consideration is supposed to optimize RDO based rate control greatly. According to our research, the inter-frame dependency is reflected by the linear relationship between QP change (ΔQP) and the resulting change of distortion (ΔD). An adaptive QP selection algorithm for global RDO is proposed based on the modeling function between ΔD and ΔQP in this paper. Firstly, based on intensive statistic analysis, three parameters (initial QP (\(\overline {QP}\)), the length of pictures of group (GOP), and the average of SATD of one frame) are used to formulate the relationship between ΔD and ΔQP. Secondly, the resulting rate change ΔR relative to ΔQP is also formulated similarly. Thirdly, optimized Lagrangian multiplier (λ) is calculated with these two mathematic models. Finally, we refine QP values based on the optimized λ in terms of dependent RDO. The experimental results show that the proposed frame-level QP selection algorithm can decrease Bj⊘tegaard Delta BitRate (BD-BR) by about 1.62% at the random-access (RA) configuration and 1.13% at the low-delay (LD) configuration, respectively. At the same time, it doesn’t increase complexity significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bjontegaard G (2001) Calculation of average psnr differences between rd-curves. ITU-T SG16/Q.6 Doc. VCEG-M33

  2. Bossen F (2013) Common test conditions and software reference configurations. JCTVC-L1100, 12th Meeting

  3. Chao P, Au OC, Feng Z, Dai J, Zhang X, Wei D (2013) An analytic framework for frame-level dependent bit allocation in hybrid video coding. IEEE Trans Circ Sys Video Technol 23(6):990–1002

    Article  Google Scholar 

  4. Cho Y, Kwon DK, Liu J, Kuo CCJ (2013) Dependent r/d modeling techniques and joint t-q layer bit allocation for h.264/svc. IEEE Trans Circ Sys Video Technol 23(6):1003–1015

    Article  Google Scholar 

  5. Gong Y, Shuai W, Yang K, Yuan Y, Bo L (2016) Rate-distortion-optimization-based quantization parameter cascading technique for random-access configuration in h.265/hevc. IEEE Trans Circ Sys Video Technol 27 (6):1–1

    Google Scholar 

  6. Gong Y, Wan S, Yang K, Wu HR, Yang F, Li B (2016) Reduction of temporal distortion in video coding based on detection of just-noticeable temporal pumping artifact. Image Commun 42(C):1–18

    Google Scholar 

  7. He J, Yang EH, Yang F, Yang K (2017) Adaptive quantization parameter selection for h.265/hevc by employing inter-frame dependency. IEEE Trans Circ Sys Video Technol 28(12):3424– 3436

    Article  Google Scholar 

  8. Hu S, Wang H, Kwong S (2012) Adaptive quantization-parameter clip scheme for smooth quality in h.264/avc. IEEE Trans Image Process 21(4):1911–1919

    Article  MathSciNet  Google Scholar 

  9. Hu S, Wang H, Kwong S, Zhao T, Kuo CCJ (2011) Rate control optimization for temporal-layer scalable video coding. IEEE Trans Circ Sys Video Technol 21(8):1152–1162

    Article  Google Scholar 

  10. Everett H (1963) Generalized lagrange multiplier method for solving problems of optimum allocation of resources. Operations Res 11(3):399–417

    Article  MathSciNet  Google Scholar 

  11. Lainema J, Bossen F, Min J, Ugur K (2013) Intra coding of the hevc standard. IEEE Trans Circ Sys Video Technol 22(12):1792–1801

    Article  Google Scholar 

  12. Li B, Xu J, Zhang D, Li H (2013) Qp refinement according to lagrange multiplier for high efficiency video coding. In: 2013 IEEE international symposium on circuits and systems (ISCAS2013). IEEE, pp 477–480

  13. Li B, Zhang D, Li H, Xu J (2012) Qp determination by lambda value. In: JCTVC-I0426

  14. Li X, Amon P, Hutter A, Kaup A (2010) Adaptive quantization parameter cascading for hierarchical video coding. In: IEEE international symposium on circuits and systems, pp 4197–4200

  15. Li X, Peter A, Andreas H, Andre K (2009) Model based analysis for quantization parameter cascading in hierarchical video coding. In: 2009 16th IEEE international conference on image processing (ICIP), pp 3765–3768

  16. Liu J, Cho Y, Guo Z, Kuo CCJ (2010) Bit allocation for spatial scalability coding of h.264/svc with dependent rate-distortion analysis. IEEE Trans Circ Sys Video Technol 20(7):967–981

    Article  Google Scholar 

  17. Ohm J, Sullivan GJ, Schwarz H, Tan TK, Wiegand T (2012) Comparison of the coding efficiency of video coding standards–including high efficiency video coding (hevc). IEEE Trans Circ Sys Video Technol 22(12):1669–1684

    Article  Google Scholar 

  18. Seidel I, Brscher AB, Güntzel JLA, Agostini LV (2016) Energy-efficient satd for beyond hevc. In: 2016 IEEE international symposium on circuits and systems (ISCAS), pp 802–805

  19. Shuai L, Zhu C, Gao Y, Zhou Y, Dufaux F, Sun MT (2016) Lagrangian multiplier adaptation for rate-distortion optimization with inter-frame dependency. IEEE Trans Circ Sys Video Technol 26(1):117–129

    Article  Google Scholar 

  20. Sullivan GJ, Ohm J, Han WJ, Wiegand T (2013) Overview of the high efficiency video coding (hevc) standard. IEEE Trans Circ Sys Video Technol 22 (12):1649–1668

    Article  Google Scholar 

  21. Sullivan GJ, Wiegand T (1998) Rate-distortion optimization for video compression. IEEE Signal Processing Magazine 15(6):74–90

    Article  Google Scholar 

  22. Wang S, Ma S, Wang S, Zhao D, Wen G (2013) Rate-gop based rate control for high efficiency video coding. IEEE Journal of Selected Topics in Signal Processing 7(6):1101–1111

    Article  Google Scholar 

  23. Wang S, Ma S, Zhao D, Gao W (2014) Lagrange multiplier based perceptual optimization for high efficiency video coding. In: Signal and information processing association annual summit and conference (APSIPA), 2014 Asia-Pacific, pp 1–4

  24. Wiegand T, Sullivan GJ, Bjontegaard G, Luthra A (2003) Overview of the h.264/avc video coding standard. IEEE Trans Circ Sys Video Technol 13(7):560–576

    Article  Google Scholar 

  25. Yan C, Li L, Zhang C, Liu B, Zhang Y, Dai Q (2019) Cross-modality bridging and knowledge transferring for image understanding. IEEE Trans Multimed 21(10):2675–2685

    Article  Google Scholar 

  26. Yan C, Tu Y, Wang X, Zhang Y, Hao X, Zhang Y, Dai Q (2019) Stat: spatial-temporal attention mechanism for video captioning. IEEE Trans Multimed. 1–1

  27. Yan C, Xie H, Chen J, Zha Z, Hao X, Zhang Y, Dai Q (2018) A fast uyghur text detector for complex background images. IEEE Tran Multimed 20 (12):3389–3398

    Article  Google Scholar 

  28. Yang T, Zhu C, Fan X, Peng Q (2012) Source distortion temporal propagation model for motion compensated video coding optimization. In: IEEE international conference on multimedia and expo, pp 85–90

  29. Zeng H, Ngan KN, Wang M (2013) Perceptual adaptive lagrangian multiplier for high efficiency video coding. 2013 Picture Coding Symposium (PCS). 69–72

  30. Zhao T, Wang Z, Chen CW (2016) Adaptive quantization parameter cascading in hevc hierarchical coding. IEEE Trans Image Process 25(7):2997–3009

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibing Yin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Li, D. & Yin, H. HEVC quantization parameter selection algorithm based on inter-frame dependency. Multimed Tools Appl 79, 13951–13966 (2020). https://doi.org/10.1007/s11042-020-08612-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-08612-3

Keywords

Navigation