Skip to main content

Advertisement

Log in

Automated TB classification using ensemble of deep architectures

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Tuberculosis (TB) is an infectious disease that mainly affects the lung region. Its initial screening is mostly performed using chest radiograph, which is also recommended by the World Health Organization. To help the radiologists in diagnosing this disease, different computer-aided diagnosis (CAD) systems have been developed. However, the development of these systems are still in the early phases as it is extremely challenging to automatically detect TB. This is due to extreme variations in the impact caused by TB on the CXR. In this study, a deep-learning-based TB detection system has been presented which achieves significantly high accuracy. The proposed method is an ensemble of three standard architectures namely AlexNet, GoogleNet and ResNet. The significant contribution of the study is to train these architectures from scratch and creating an ensemble suited to perform TB classification. The proposed method is trained and evaluated on a combined dataset formed using publicly available standard datasets. The ensemble attains the accuracy of 88.24% and area under the curve is equal to 0.93, which eclipses the performance of most of the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arzhaeva Y, Hogeweg L, de Jong P, Viergever M, van Ginneken B (2009) Global and local multi-valued dissimilarity-based classification: application to computer-aided detection of tuberculosis. Med Image Comput Computer-Assisted Intervention–MICCAI 2009:724–731

    Google Scholar 

  2. Bar Y, Diamant I, Wolf L, Lieberman S, Konen E, Greenspan H (2015) Chest pathology detection using deep learning with non-medical training. In: 2015 IEEE 12th international symposium on biomedical imaging (ISBI), pp 294–297

  3. Bar Y, Diamant I, Wolf L, Lieberman S, Konen E, Greenspan H (2018) Chest pathology identification using deep feature selection with non-medical training. Comput Methods Biomechanics Biomedical Eng Image Visualization 6(3):259–263

    Article  Google Scholar 

  4. CAD4TB Cad4tb. http://www.diagnijmegen.nl/index.php/CAD4TB

  5. Cao Y, Liu C, Liu B, Brunette MJ, Zhang N, Sun T, Zhang P, Peinado J, Garavito ES, Garcia LL et al (2016) Improving tuberculosis diagnostics using deep learning and mobile health technologies among resource-poor and marginalized communities. In: 2016 IEEE first international conference on connected health: applications, systems and engineering technologies (CHASE), pp 274–281

  6. Chen H, Dou Q, Wang X, Qin J, Heng PA, et al. (2016) Mitosis detection in breast cancer histology images via deep cascaded networks. In: AAAI, pp 1160–1166

  7. Cireşan DC, Giusti A, Gambardella LM, Schmidhuber J (2013) Mitosis detection in breast cancer histology images with deep neural networks. In: International conference on medical image computing and computer-assisted intervention, pp 411–418

    Chapter  Google Scholar 

  8. Ebrahimian H, Rijal OM, Noor NM, Yunus A, Mahyuddin AA (2014) Phase congruency parameter estimation and discrimination ability in detecting lung disease chest radiograph. In: 2014 IEEE conference on biomedical engineering and sciences (IECBES), pp 729–734

  9. Gao L, Guo Z, Zhang H, Xu X, Shen H (2017) Video captioning with attention-based lstm and semantic consistency. IEEE Trans Multimedia 19(9):2045–2055

    Article  Google Scholar 

  10. van Ginneken B, Katsuragawa S, ter Haar Romeny BM, Doi K, Viergever MA (2002) Automatic detection of abnormalities in chest radiographs using local texture analysis. IEEE Trans Med Imaging 21(2):139–149

    Article  Google Scholar 

  11. Girardi D, Küng J, Kleiser R, Sonnberger M, Csillag D, Trenkler J, Holzinger A (2016) Interactive knowledge discovery with the doctor-in-the-loop: a practical example of cerebral aneurysms research. Brain Inform 3(3):133

    Article  Google Scholar 

  12. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin PM, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31

    Article  Google Scholar 

  13. He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. arXiv:1512.03385

  14. Heo SJ, Kim Y, Yun S, Lim SS, Kim J, Nam CM, Park EC, Jung I, Yoon JH (2019) Deep learning algorithms with demographic information help to detect tuberculosis in chest radiographs in annual workers’ health examination data. Int J Environ Res Public Health 16(2):250

    Article  Google Scholar 

  15. Hogeweg L, Mol C, de Jong PA, Dawson R, Ayles H, van Ginneken B (2010) Fusion of local and global detection systems to detect tuberculosis in chest radiographs. In: International conference on medical image computing and computer-assisted intervention, pp 650–657

  16. Hogeweg L, Sánchez CI, Maduskar P, Philipsen R, Story A, Dawson R, Theron G, Dheda K, Peters-Bax L, van Ginneken B (2015) Automatic detection of tuberculosis in chest radiographs using a combination of textural, focal, and shape abnormality analysis. IEEE Trans Med Imaging 34(12):2429–2442

    Article  Google Scholar 

  17. Holzinger A (2016) Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inform 3(2):119–131

    Article  Google Scholar 

  18. Holzinger A, Plass M, Holzinger K, Crişan GC, Pintea CM, Palade V (2016) Towards interactive machine learning (iml): applying ant colony algorithms to solve the traveling salesman problem with the human-in-the-loop approach. In: International conference on availability, reliability, and security. Springer, pp 81–95

  19. Huang G, Liu Z, Weinberger KQ, van der Maaten L (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, p 3

  20. Hwang S, Kim HE, Jeong J, Kim HJ (2016) A novel approach for tuberculosis screening based on deep convolutional neural networks. In: SPIE medical imaging, pp 97,852w–97,852w

  21. Jaeger S, Karargyris A, Antani S, Thoma G (2012) Detecting tuberculosis in radiographs using combined lung masks. In: 2012 Annual international conference of the IEEE engineering in medicine and biology society, pp 4978–4981

  22. Jaeger S, Candemir S, Antani S, Wang YX, Lu PX, Thoma G (2014) Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant Imaging Med Surg 4(6):475–477

    Google Scholar 

  23. Jaeger S, Karargyris A, Candemir S, Folio L, Siegelman J, Callaghan F, Xue Z, Palaniappan K, Singh RK, Antani S et al (2014) Automatic tuberculosis screening using chest radiographs. IEEE Trans Med Imaging 33(2):233–245

    Article  Google Scholar 

  24. Jagoe JR, Paton KA (1976) Measurement of pneumoconiosis by computer. IEEE Trans Comput C-25(1):95–97

    Article  Google Scholar 

  25. Karargyris A, Siegelman J, Tzortzis D, Jaeger S, Candemir S, Xue Z, Santosh K, Vajda S, Antani S, Folio L et al (2016) Combination of texture and shape features to detect pulmonary abnormalities in digital chest x-rays. Int J Comput Assist Radiol Surg 11(1):99–106

    Article  Google Scholar 

  26. Koeslag A, de Jager G (2001) Computer aided diagnosis of miliary tuberculosis. In: Proceedings of the pattern recognition association of South Africa

  27. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  28. Lakhani P, Sundaram B (2017) Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284(2):574–582

    Article  Google Scholar 

  29. Le K (2006) Automated detection of early lung cancer and tuberculosis based on x-ray image analysis. In: Proceedings WSEAS international conference on signal, speech and image processing, pp 1–6

  30. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  31. Maduskar P, Philipsen R, Melendez J, Scholten E, Chanda D, Ayles H, Sánchez CI, van Ginneken B (2016) Automatic detection of pleural effusion in chest radiographs. Med Image Analysis 28:22–32

    Article  Google Scholar 

  32. Melendez J, Sánchez C, Philipsen R, Maduskar P, van Ginneken B (2014) Multiple-instance learning for computer-aided detection of tuberculosis. In: SPIE medical imaging, pp 90,351j–90,351j

  33. Melendez J, van Ginneken B, Maduskar P, Philipsen R, Ayles H, Sánchez CI (2016) On combining multiple-instance learning and active learning for computer-aided detection of tuberculosis. IEEE Trans Med Imaging 35(4):1013–1024

    Article  Google Scholar 

  34. Organization WH (2016) Global tuberculosis report 2016

  35. Paul JL, Levine MD, Fraser RG, Laszlo CA (1974) The measurement of total lung capacity based on a computer analysis of anterior and lateral radiographic chest images. IEEE Trans Biomed Eng BME-21(6):444–451

    Article  Google Scholar 

  36. Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in mri images. IEEE Trans Med Imaging 35(5):1240–1251

    Article  Google Scholar 

  37. Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M (2013) Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: International conference on medical image computing and computer-assisted intervention, pp 246–253

  38. Ratnasari N, Susanto A, Soesanti I, et al. (2013) Thoracic x-ray features extraction using thresholding-based roi template and pca-based features selection for lung tb classification purposes. In: 2013 3rd international conference on instrumentation, communications, information technology, and biomedical engineering (ICICI-BME), pp 65–69

  39. Rijal OM, Ebrahimian H, Noor NM (2012) Determining features for discriminating ptb and normal lungs using phase congruency model. In: Proceedings of 2012 IEEE-EMBS international conference on biomedical and health informatics, pp 341–344

  40. Roth HR, Farag A, Lu L, Turkbey EB, Summers RM (2015) Deep convolutional networks for pancreas segmentation in ct imaging. In: Medical imaging 2015: image processing, vol 9413, p 94131g

  41. Roth HR, Lu L, Farag A, Shin HC, Liu J, Turkbey EB, Summers RM (2015) Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. In: International conference on medical image computing and computer-assisted intervention, pp 556–564

  42. Shen R, Cheng I, Basu A (2010) A hybrid knowledge-guided detection technique for screening of infectious pulmonary tuberculosis from chest radiographs. IEEE Trans Biomed Eng 57(11):2646–2656

    Article  Google Scholar 

  43. Shiraishi J, Katsuragawa S, Ikezoe J, Matsumoto T, Kobayashi T, Komatsu K, Matsui M, Fujita H, Kodera Y, Doi K (2000) Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. AJR Am J Roentgenol 174(1):71–74

    Article  Google Scholar 

  44. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556

  45. Song J, Gao L, Nie F, Shen H, Yan Y, Sebe N (2016) Optimized graph learning using partial tags and multiple features for image and video annotation. IEEE Trans Image Process 25(11):4999–5011

    Article  MathSciNet  MATH  Google Scholar 

  46. Song J, Guo Y, Gao L, Li X, Hanjalic A, Shen H (2018) From deterministic to generative: multimodal stochastic rnns for video captioning. IEEE Trans Neural Netw Learning Sys (99):1–12

  47. Song J, Zhang H, Li X, Gao L, Wang M, Hong R (2018) Self-supervised video hashing with hierarchical binary auto-encoder. IEEE Trans Image Process 27 (7):3210–3221

    Article  MathSciNet  MATH  Google Scholar 

  48. Sutton RN, Hall EL (1972) Texture measures for automatic classification of pulmonary disease. IEEE Trans Comput C-21(7):667–676

    Article  Google Scholar 

  49. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9

  50. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818–2826

  51. Tan JH, Acharya UR, Tan C, Abraham KT, Lim CM (2012) Computer-assisted diagnosis of tuberculosis: a first order statistical approach to chest radiograph. J Med Sys 36(5):2751–2759

    Article  Google Scholar 

  52. Wang H, Roa AC, Basavanhally AN, Gilmore HL, Shih N, Feldman M, Tomaszewski J, Gonzalez F, Madabhushi A (2014) Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. J Med Imaging 1(3):034,003

    Article  Google Scholar 

  53. Wang X, Gao L, Song J, Shen H (2017) Beyond frame-level cnn: saliency-aware 3-d cnn with lstm for video action recognition. IEEE Signal Process Lett 24(4):510–514

    Article  Google Scholar 

  54. Wang X, Gao L, Wang P, Sun X, Liu X (2018) Two-stream 3-d convnet fusion for action recognition in videos with arbitrary size and length. IEEE Trans Multimedia 20(3):634–644

    Article  Google Scholar 

  55. Xu T, Cheng I, Long R, Mandal M (2013) Novel coarse-to-fine dual scale technique for tuberculosis cavity detection in chest radiographs. EURASIP J Image Video Process 2013(1):1

    Article  Google Scholar 

  56. Yan C, Xie H, Chen J, Zha Z, Hao X, Zhang Y, Dai Q (2018) A fast uyghur text detector for complex background images. IEEE Trans Multimedia 20 (12):3389–3398

    Article  Google Scholar 

  57. Yan C, Li L, Zhang C, Liu B, Zhang Y, Dai Q (2019) Cross-modality bridging and knowledge transferring for image understanding. IEEE Trans Multimedia

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Mittal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hooda, R., Mittal, A. & Sofat, S. Automated TB classification using ensemble of deep architectures. Multimed Tools Appl 78, 31515–31532 (2019). https://doi.org/10.1007/s11042-019-07984-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-07984-5

Keywords

Navigation