Skip to main content
Log in

Single object tracking using particle filter framework and saliency-based weighted color histogram

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Despite many years of research, object tracking remains a challenging problem, not only because of the variety of object appearances, but also because of the complexity of surrounding environments. In this research, we present an algorithm for single object tracking using a particle filter framework and color histograms. Particle filters are iterative algorithms that perform predictions in each iteration using particles, which are samples drawn from a statistical distribution. Color histograms are embedded in these particles, and the distances between histograms are used to measure likelihood between targets and observations. One downside of color histograms is that they ignore spatial information, which may produce tracking failure when objects appear that are similar in color. To overcome this disadvantage, we propose a saliency-based weighting scheme for histogram calculation. Given an image region, first its saliency map is generated. Next, its histogram is calculated based on the generated saliency map. Pixels located in salient regions have higher weights than those in others, which helps preserve the spatial information. Experimental results showed the efficiency of the proposed appearance model in object tracking under various conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Barthélemy Q, Larue A, Mars JI (2015) Color sparse representations for image processing: review, models, and prospects. IEEE Trans Image Process 24(11):3978–3989. https://doi.org/10.1109/TIP.2015.2458175

    Article  MathSciNet  Google Scholar 

  2. Borji A, Itti L (2013) State-of-the-art in visual attention modeling. IEEE Trans Pattern Anal Mach Intell 35(1):185–207. https://doi.org/10.1109/TPAMI.2012.89

    Article  Google Scholar 

  3. Bostanci E, Kanwal N, Clark AF (2015) Augmented reality applications for cultural heritage using Kinect. Human-Centric Comput Informa Sci 5(1):1–18. https://doi.org/10.1186/s13673-015-0040-3

    Article  Google Scholar 

  4. Dinh TB, Yu Q, Medioni G (2014) Co-trained generative and discriminative trackers with cascade particle filter. Comput Vis Image Underst 119:41–56. https://doi.org/10.1016/j.cviu.2013.11.003

    Article  Google Scholar 

  5. Haug AJ (2012) Bayesian estimation and tracking: a practical guide. Wiley

  6. Hou X, Zhang L (2007) Saliency detection: a spectral residual approach. In: 2007 IEEE Conference on computer vision and pattern recognition, pp 1–8. https://doi.org/10.1109/CVPR.2007.383267

  7. Isard M, Blake A (1998) Condensation-conditional density propagation for visual tracking. Int J Comput Vis 29(1):5–28. https://doi.org/10.1023/A:1008078328650

    Article  Google Scholar 

  8. Jia X, Lu H, Yang MH (2012) Visual tracking via adaptive structural local sparse appearance model. In: 2012 IEEE Conference on computer vision and pattern recognition, pp 1822–1829. https://doi.org/10.1109/CVPR.2012.6247880

  9. Juhyun L, Hanbyul C, Kicheon H (2015) A fainting condition detection system using thermal imaging cameras based object tracking algorithm. J Converg 6(3):1–15

    Google Scholar 

  10. Klein G, Murray DW (2006) Full-3d edge tracking with a particle filter. In: Proceedings of the British machine vision conference, pp 114.1–114.10. https://doi.org/10.5244/C.20.114

  11. Kristan M, Matas J, Leonardis A, Vojíř T, Pflugfelder R, Fernández G, Nebehay G, Porikli F, C̆ehovin L (2016) A novel performance evaluation methodology for single-target trackers. IEEE Trans Pattern Anal Mach Intell 38(11):2137–2155. https://doi.org/10.1109/TPAMI.2016.2516982

    Article  Google Scholar 

  12. Li XR, Jilkov VP (2003) Survey of maneuvering target tracking. Part I. dynamic models. IEEE Trans Aerosp Electron Syst 39(4):1333–1364. https://doi.org/10.1109/TAES.2003.1261132

    Article  Google Scholar 

  13. Li P, Zhang T, Pece AE (2003) Visual contour tracking based on particle filters. Image Vis Comput 21(1):111–123. https://doi.org/10.1016/S0262-8856(02)00133-6

    Article  Google Scholar 

  14. Li T, Bolic M, Djuric PM (2015) Resampling methods for particle filtering: classification, implementation, and strategies. IEEE Signal Process Mag 32(3):70–86. https://doi.org/10.1109/MSP.2014.2330626

    Article  Google Scholar 

  15. Lin S, Garratt MA, Lambert AJ (2017) Monocular vision-based real-time target recognition and tracking for autonomously landing an UAV in a cluttered shipboard environment. Auton Robot 41(4):881–901. https://doi.org/10.1007/s10514-016-9564-2

    Article  Google Scholar 

  16. Liu B, Yang L, Huang J, Meer P, Gong L, Kulikowski C (2010) Robust and fast collaborative tracking with two stage sparse optimization. In: Proceedings of the 11th European conference on computer vision: part IV, pp 624–637

    Chapter  Google Scholar 

  17. Mei X, Ling H (2009) Robust visual tracking using 1 minimization. In: 2009 IEEE 12th International conference on computer vision, pp 1436–1443. https://doi.org/10.1109/ICCV.2009.5459292

  18. Meshgi K, Oba S, Ishii S (2016) Robust discriminative tracking via query-by-bagging. In: 2016 13th IEEE International conference on advanced video and signal based surveillance (AVSS), pp 8–14. https://doi.org/10.1109/AVSS.2016.7738027

  19. Nummiaro K, Koller-Meier E, Gool LJV (2002) Object tracking with an adaptive color-based particle filter. In: Pattern Recognition, 24th DAGM symposium, Zurich, Switzerland, September 16-18, 2002, proceedings, pp 353–360. https://doi.org/10.1007/3-540-45783-6_43

    Google Scholar 

  20. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66. https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  21. Pham I, Polasek M (2014) Algorithm for military object detection using image data. In: 2014 IEEE/AIAA 33rd Digital avionics systems conference (DASC), pp 3D3–1–3D3–15. https://doi.org/10.1109/DASC.2014.6979457

  22. Possegger H, Mauthner T, Bischof H (2015) In defense of color-based model-free tracking. In: 2015 IEEE Conference on computer vision and pattern recognition (CVPR), pp 2113–2120. https://doi.org/10.1109/CVPR.2015.7298823

  23. Ross DA, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1):125–141. https://doi.org/10.1007/s11263-007-0075-7

    Article  Google Scholar 

  24. Sarif BA, Pourazad MT, Nasiopoulos P, Leung VC, Mohamed A (2015) Fairness scheme for energy efficient H.264/AVC-based video sensor network. Human-Centric Comput Inform Sci 5(1):7. https://doi.org/10.1186/s13673-015-0025-2

    Article  Google Scholar 

  25. Sevilla-Lara L, Learned-Miller E (2012) Distribution fields for tracking. In: 2012 IEEE Conference on computer vision and pattern recognition, pp 1910–1917. https://doi.org/10.1109/CVPR.2012.6247891

  26. Sidibé D, Fofi D, Mériaudeau F (2010) Using visual saliency for object tracking with particle filters. In: 2010 18th European signal processing conference, pp 1776–1780

  27. Smeulders AWM, Chu DM, Cucchiara R, Calderara S, Dehghan A, Shah M (2014) Visual tracking: an experimental survey. IEEE Trans Pattern Anal Mach Intell 36(7):1442–1468. https://doi.org/10.1109/TPAMI.2013.230

    Article  Google Scholar 

  28. Su Y, Zhao Q, Zhao L, Gu D (2014) Abrupt motion tracking using a visual saliency embedded particle filter. Pattern Recogn 47(5):1826–1834. https://doi.org/10.1016/j.patcog.2013.11.028

    Article  Google Scholar 

  29. Sung Y, Kwak J, Park JH (2015) Graph-based motor primitive generation framework. Human-Centric Comput Inform Sci 5(1):35. https://doi.org/10.1186/s13673-015-0051-0

    Article  Google Scholar 

  30. Vega-Maldonado S, Wario F, Arámburo-Lizárraga J, Perez-Cisneros M, Cedano-Olvera M (2015) Visual registration and tracking for traffic monitoring. In: 2015 IEEE First international smart cities conference (ISC2), pp 1–6. https://doi.org/10.1109/ISC2.2015.7366216

  31. Vojir T, Noskova J, Matas J (2014) Robust scale-adaptive mean-shift for tracking. Pattern Recogn Lett 49:250–258. https://doi.org/10.1016/j.patrec.2014.03.025

    Article  Google Scholar 

  32. Yang H, Shao L, Zheng F, Wang L, Song Z (2011) Recent advances and trends in visual tracking: a review. Neurocomputing 74(18):3823–3831. https://doi.org/10.1016/j.neucom.2011.07.024

    Article  Google Scholar 

  33. Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38(4):1–45. https://doi.org/10.1145/1177352.1177355

    Article  Google Scholar 

  34. Yoo S, Kim W, Kim C (2014) Saliency combined particle filtering for aircraft tracking. J Signal Process Syst 76(1):19–31. https://doi.org/10.1007/s11265-013-0803-x

    Article  Google Scholar 

  35. Yuan Y, Gao C, Liu Q, Wang J, Zhang C (2014) Using local saliency for object tracking with particle filters. In: 2014 IEEE International Conference on signal processing, communications and computing (ICSPCC), pp 388–393. https://doi.org/10.1109/ICSPCC.2014.6986221

Download references

Funding

This study was funded by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1D1A1A01057518).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghoon Kim.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(AVI 26.4 MB)

(AVI 26.8 MB)

(AVI 16.5 MB)

(AVI 16.7 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truong, M.T.N., Pak, M. & Kim, S. Single object tracking using particle filter framework and saliency-based weighted color histogram. Multimed Tools Appl 77, 30067–30088 (2018). https://doi.org/10.1007/s11042-018-6180-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6180-5

Keywords

Navigation