Skip to main content
Log in

A new semantic segmentation approach of 3D mesh using the stereoscopic image colors

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper introduces a new mesh segmentation approach into semantic parts, most closely resemble those made by humans, which is based on the pixel color of the images used in the 3D reconstruction. This approach allows to segment the mesh into semantic and a much simpler way than most of the mesh segmentation methods that are based on the geometrical characteristics of the mesh. The principle of our method is to establish a link between the color objects of the scene and the mesh while exploiting the link between the interest points of the images brought into play and the vertices of 3D mesh. The results in great part, reflect the efficiency and performance of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Attene M, Falcidieno B, Spagnuolo M (2006) Hierarchical mesh segmentation based on fitting primitives. Vis Comput 22(3):181–193

    Article  Google Scholar 

  2. Bhatia SK (2004) Adaptive k-means clustering. In FLAIRS conference (pp. 695–699)

  3. Cazals F, Giesen J (2006) Delaunay triangulation based surface reconstruction. In Effective computational geometry for curves and surfaces(pp. 231–276). Springer Berlin Heidelberg

  4. Chen X, Golovinskiy A, Funkhouser T (2009) A benchmark for 3D mesh segmentation. In ACM Transactions on Graphics (TOG) (Vol. 28, No. 3, p. 73). ACM

    Article  Google Scholar 

  5. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395

    Article  MathSciNet  Google Scholar 

  6. El Akkad N, Merras M, Saaidi A, Satori K (2014) Camera self-calibration with varying intrinsic parameters by an unknown three-dimensional scene. Vis Comput 30(5):519–530

    Article  Google Scholar 

  7. Fu KS (Ed.) (2013) VLSI for pattern recognition and image processing (Vol. 13). Springer Science & Business Media

  8. Furukawa Y, Ponce J (2010) Accurate, dense, and robust multiview stereopsis. IEEE Trans Pattern Anal Mach Intell 32(8):1362–1376

    Article  Google Scholar 

  9. George D, Xie X, Tam GK (2017) 3D Mesh Segmentation via Multi-branch 1D Convolutional Neural Networks. arXiv preprint arXiv:1705.11050

  10. Ghosh M, Amato NM, Lu Y, Lien JM (2013) Fast approximate convex decomposition using relative concavity. Computer-Aided Design

  11. Goesele M, Snavely N, Curless B, Hoppe H, Seitz SM (2007). Multi-view stereo for community photo collections. In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on (pp. 1–8). IEEE

  12. Gold CM, Dakowicz M (2005) The crust and skeleton–applications in GIS. In Proceedings, 2nd. International Symposium on Voronoi Diagrams in Science and Engineering (pp. 33–42)

  13. Golovinskiy A, Funkhouser T (2008) Randomized cuts for 3D mesh analysis. ACM transactions on graphics (TOG) 27(5):145

    Article  Google Scholar 

  14. Golovinskiy A, Funkhouser T (2008). Randomized cuts for 3D mesh analysis. In ACM transactions on graphics (TOG) (Vol. 27, No. 5, p. 145). ACM

    Article  Google Scholar 

  15. Jeon J, Jung Y, Kim H, Lee S (2016) Texture map generation for 3D reconstructed scenes. The Visual Computer, 1–11

  16. Katz S, Tal A (2003) Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. (SIGGRAPH) 22(3):954–961

    Article  Google Scholar 

  17. Katz S, Leifman G, Tal A (2005) Mesh segmentation using feature point and core extraction. Vis Comput 21(8–10):649–658

    Article  Google Scholar 

  18. Krayevoy V, Sheffer A (2006). Variational, meaningful shape decomposition. In ACM SIGGRAPH 2006 Sketches (p. 50). ACM

  19. Lai P, Samson C (2016) Applications of mesh parameterization and deformation for unwrapping 3D images of rock tunnels. Tunn Undergr Space Technol 58:109–119

    Article  Google Scholar 

  20. Lai YK, Hu SM, Martin RR, Rosin PL (2008). Fast mesh segmentation using random walks. In Proceedings of the 2008 ACM symposium on Solid and physical modeling (pp. 183–191). ACM

  21. Lhuillier M, Quan L (2002) Match propagation for image-based modeling and rendering. IEEE Trans Pattern Anal Mach Intell 24(8):1140–1146

    Article  Google Scholar 

  22. Lhuillier M, Quan L (2005) A quasi-dense approach to surface reconstruction from uncalibrated images. IEEE Trans Pattern Anal Mach Intell 27(3):418–433

    Article  Google Scholar 

  23. Lien JM, Amato NM (2007) Approximate convex decomposition of polyhedra. In Proceedings of the 2007 ACM symposium on Solid and physical modeling (pp. 121–131). ACM

  24. Lien JM, Amato NM (2008) Approximate convex decomposition of polyhedra and its applications. Computer Aided Geometric Design 25(7):503–522

    Article  MathSciNet  Google Scholar 

  25. Liu R, Zhang H, Busby J (2008). Convex hull covering of polygonal scenes for accurate collision detection in games. In Proceedings of graphics interface 2008 (pp. 203–210). Canadian Information Processing Society

  26. Lowe DG (1999) Object recognition from local scale-invariant features. In Computer vision, 1999. The proceedings of the seventh IEEE international conference on (Vol. 2, pp. 1150–1157). Ieee

  27. Pollefeys M, Koch R, Vergauwen M, Van Gool L (2000) Automated reconstruction of 3D scenes from sequences of images. ISPRS J Photogramm Remote Sens 55(4):251–267

    Article  Google Scholar 

  28. Serino L, di Baja GS, Arcelli C (2010) Object decomposition via curvilinear skeleton partition. In 2010 International Conference on Pattern Recognition (pp. 4081–4084). IEEE

  29. Shapira L, Shamir A, Cohen-Or D (2008) Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis Comput 24(4):249–259

    Article  Google Scholar 

  30. Shu Z, Qi C, Xin S, Hu C, Wang L, Zhang Y, Liu L (2016) Unsupervised 3D shape segmentation and co-segmentation via deep learning. Computer Aided Geometric Design 43:39–52

    Article  MathSciNet  Google Scholar 

  31. Ulusoy AO, Black MJ, Geiger A (2017) Semantic multi-view stereo: Jointly estimating objects and voxels. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (Vol. 2)

  32. Wang H, Lu T, Au OKC, Tai CL (2014) Spectral 3D mesh segmentation with a novel single segmentation field. Graph Model 76(5):440–456

    Article  Google Scholar 

  33. Xie Z, Xu K, Liu L, Xiong Y (2014) 3d shape segmentation and labeling via extreme learning machine. In Computer graphics forum (Vol. 33, No. 5, pp. 85–95)

    Article  Google Scholar 

  34. Yao L, Huang S, Xu H, Li P (2015) Quadratic error metric mesh simplification algorithm based on discrete curvature. Math Probl Eng 2015:1–7

    MathSciNet  MATH  Google Scholar 

  35. Zeramdini B, Robert C, Germain G, Pottier T (2016) Simulation of Metal Forming Processes with a 3D Adaptive Remeshing Procedure

  36. Zöckler M, Stalling D, Hege HC (2000) Fast and intuitive generation of geometric shape transitions. Vis Comput 16(5):241–253

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderazzak Taime.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taime, A., Saaidi, A. & Satori, K. A new semantic segmentation approach of 3D mesh using the stereoscopic image colors. Multimed Tools Appl 77, 27143–27162 (2018). https://doi.org/10.1007/s11042-018-5911-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5911-y

Keywords

Navigation