Skip to main content
Log in

Pairwise IPVO-based reversible data hiding

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Recently, Peng et al. proposed a reversible data hiding method based on improved pixel-value-ordering (PVO) and prediction-error expansion. In this paper, a novel method is proposed by extending Peng et al.’s work. In our method, three largest (or smallest) pixels in a block are utilized to generate two differences, and a new pixel modification strategy is proposed so that the PVO remains unchanged after data embedding. Taking three largest pixels for example, we utilize the third largest pixel to predict the second largest one, and meanwhile use the second largest one to predict the maximum. In this way, two differences are obtained. They are modified jointly so as to be embedded with log 23 bits instead of 2 bits in the traditional RDH methods. The advantage of doing so is to exclude situations where PVO is changed. Moreover, two embedding layers are utilized together to further decrease the embedding distortion. Extensive experiments verify that the proposed method outperforms Peng et al. ’s and some other state-of-the-art works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13(8):1147–1156

    Article  MathSciNet  Google Scholar 

  2. Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-lsb data embedding. IEEE Trans Image Process 12(2):157–160

    Google Scholar 

  3. Chen XY, Chen S, Wu YL (2017) Coverless information hiding method based on the chinese character encoding. J Internet Technol 18(2):91–98

    Google Scholar 

  4. Coatrieux G, Pan W, Cuppens-Boulahia N, Cuppens F, Roux C (2013) Reversible watermarking based on invariant image classification and dynamic histogram shifting. IEEE Trans Inf Forensic Secur 8(1):111–120

    Article  Google Scholar 

  5. Coltuc D (2011) Improved embedding for prediction-based reversible watermarking. IEEE Trans Inf Forensic Secur 6(3):873–882

    Article  Google Scholar 

  6. Coltuc D (2012) Low distortion transform for reversible watermarking. IEEE Trans Image Process 21(1):412–417

    Article  MathSciNet  MATH  Google Scholar 

  7. Coltuc D, Chassery JM (2007) Very fast watermarking by reversible contrast mapping. IEEE Signal Process Lett 14(4):255–258

    Article  Google Scholar 

  8. Fridrich J, Goljan M, Du R (2002) Lossless data embedding-new paradigm in digital watermarking. EURASIP J Appl Signal Process 2002:185–196

    MATH  Google Scholar 

  9. Gao X, An L, Yuan Y, Tao D, Li X (2011) Lossless data embedding using eneralized statistical quantity histogram. IEEE Trans Circ Syst Video Technol 21 (8):1061–1070

    Article  Google Scholar 

  10. Hong W An efficient prediction-and-shifting embedding technique for high quality reversible data hiding, EURASIP Journal of Advanced Signal Process

  11. Hong W (2012) Adaptive reversible data hiding method based on error energy control and histogram shifting. Opt Commun 285(2):101–108

    Article  Google Scholar 

  12. Hong W, Chen T, Shiu CW (2009) Reversible data hiding for high quality images using modification of prediction errors. J Syst Softw 82(11):1833–1842

    Article  Google Scholar 

  13. Hong W, Chen T, Wu M (2013) An improved human visual system based reversible data hiding method using adaptive histogram modification. Opt Commun 291:87–97

    Article  Google Scholar 

  14. Honsinger CW, Jones P, Rabbani M, Stoffe JC Lossless recovery of an original image containing embedded data, US patent: 6278791W

  15. Hu Y, Lee HK, Li J (2009) DE-based reversible data hiding with improved overflow location map. IEEE Trans Circ Syst Video Technol 19(2):250–260

    Article  Google Scholar 

  16. Jung S, Ha L, Ko S (2011) A new histogram modification based reversible data hiding algorithm considering the human visual system. IEEE Signal Process Lett 18(2):95–98

    Article  Google Scholar 

  17. Kamstra L, Heijmans HJAM (2005) Reversible data embedding into images using wavelet technique and sorting. Image Process 14(12):2082–2090

    Article  MathSciNet  Google Scholar 

  18. Kim HJ, Sachnev V, Shi YQ, Nam J, Choo HG (2008) A novel difference expansion transform for reversible data embedding. IEEE Trans Inf Forensic Secur 4 (3):456–465

    Google Scholar 

  19. Li J, Li X, Yang B, Sun XM (2015) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forensic Secur 10(3):507–518

    Article  Google Scholar 

  20. Li X, Li B, Yang B, Zeng TY (2013) General framework to histogram-shifting-based reversible data hiding. IEEE Trans Image Process 22 (6):2181–2191

    Article  MathSciNet  MATH  Google Scholar 

  21. Li X, Li J, Li B, Yang B (2013) High-fidelity reversible data hiding scheme based on pixel-value-ordering and prediction-error expansion. Signal Process 93 (1):198–205

    Article  MathSciNet  Google Scholar 

  22. Li X, Yang B, Zeng TY (2011) Efficient reversible watermarking based on adaptive prediction-errorexpansion and pixel selection. IEEE Trans Image Process 20 (12):3524–3533

    Article  MathSciNet  MATH  Google Scholar 

  23. Li X, Zhang WM, Gui XL, Yang B (2013) A novel reversible data hiding scheme based on two-dimensional difference-histogram modification. IEEE Trans Inf Forensic Secur 8(7):1091–1100

    Article  Google Scholar 

  24. Luo L, Chen Z, Chen M, Zeng X, Xiong Z (2010) Reversible image watermarking using interpolation technique. IEEE Trans Inf Forensic Secur 5(1):187–193

    Article  Google Scholar 

  25. Ma K, Zhang W, Zhao X (2013) Reversible data hiding in encrypted images by reserving room before encryption. IEEE Trans Image Process 8(3):553–562

    Google Scholar 

  26. Ni Z, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circ Syst Vid Technol 16:354–362

    Article  Google Scholar 

  27. Ou B, Li X, Zhao Y, Ni RR (2013) Reversible data hiding based on pde predictor. J Syst Softw 86(10):2700–2709

    Article  Google Scholar 

  28. Ou B, Li X, Zhao Y, Ni RR (2014) Reversible data hiding using invariant pixel-value-ordering and prediction-error expansion. Signal Process Image Commun 29 (7):198–205

    Article  Google Scholar 

  29. Peng F, Li X, Yang B (2012) Adaptive reversible data hiding scheme based on integer transform. Signal Process 92(1):54–62

    Article  Google Scholar 

  30. Peng F, Li X, Yang B (2014) Improved pvo-based reversible data hiding. Digit Signal Process 25:255–265

    Article  Google Scholar 

  31. Sachnev V, Kim HJ, Nam J, Suresh S, Shi YQ (2009) Reversible watermarking algorithm using sorting and prediction. Circuits Syst Video Technol 19 (7):989–999

    Article  Google Scholar 

  32. Tai WL, Yeh CM, Chang CC (2009) Reversible data hiding based on histogram modification of pixel differences. IEEE Trans Circ Syst Video Technol 19(6):906–910

    Article  Google Scholar 

  33. Thodi DM, Rodrguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16(3):721–730

    Article  MathSciNet  Google Scholar 

  34. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circ Syst Video Technol 13(8):890–896

    Article  Google Scholar 

  35. Tsai PY, Hu YC, Yeh HL (2009) Reversible image hiding scheme using predictive coding and histogram shifting. Signal Process 89(6):1129–1143

    Article  MATH  Google Scholar 

  36. Tsai YY, Tsai DS, Liu CL (2009) Reversible data hiding scheme based on neighboring pixel differences. Digit Signal Process 23(3):919–927

    Article  MathSciNet  Google Scholar 

  37. Wang X, Li X, Yang B (2010) High capacity reversible image watermarking based on integer transform. In: Proceedings of ICIP, pp 217–220

  38. Wang X, Li X, Yang B, Guo ZM (2010) Efficient generalized integer transform for reversible watermarking. IEEE Signal Process Lett 17(6):567–570

    Article  Google Scholar 

  39. Weng SW, Pan JS (2013) Reversible watermarking based on multiple predictionmodes and adaptive watermark embedding. Multimed Tools Appl 72 (3):3063–3083

    Article  Google Scholar 

  40. Weng SW, Zhao Y, Ni RR, Pan JS (2009) Parity-invariability-based reversible watermarking. IET Electron Lett 1(2):91–95

    Google Scholar 

  41. Weng SW, Zhao Y, Pan JS, Ni RR (2008) Reversible watermarking based on invariability and adjustment on pixel pairs. IEEE Signal Process Lett 45(20):1022–1023

    Google Scholar 

  42. Wu H-T, Huang JW (2012) Reversible image watermarking on prediction errors by efficient histogram modification. Signal Process 92(12):3000–3009

    Article  Google Scholar 

  43. Wu X, Memon N (1997) Context-based, adaptive, lossless image coding. IEEE Trans Commun 45(4):437–444

    Article  Google Scholar 

  44. Xia ZH, Wang X, Sun XM, Liu Q, Xiong NX (2016) Steganalysis of lsb matching using differences between nonadjacent pixels. Multimed Tools Appl 75 (4):1947–1962

    Article  Google Scholar 

  45. Xia ZH, Wang X, Sun XM, Wang BW (2014) Steganalysis of least significant bit matching using multi-order differences. Secur Commun Netw 7(8):1283–1291

    Article  Google Scholar 

  46. Xia ZH, Wang X, Zhang LG, Qin XMSZ, Ren K (2016) A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans Inf Forensic Secur 11(11):2594– 2608

    Article  Google Scholar 

  47. Xuan GR, Yang CY, Zhen YZ, Shi YQ (2004) Reversible data hiding using integer wavelet transform and companding technique. Proc IWDW 5:23–26

    Google Scholar 

  48. You X, Du L, Cheung Y (2010) A blind watermarking scheme using new nontensor product wavelet filter banks. IEEE Trans Image Process 19(12):3271–3284

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang D, You X, Wang P et al (2009) Facial biometrics using nontensor product wavelet and 2d discriminant techniques. Int J Pattern Recogn Artif Intell 23 (3):521–543

    Article  Google Scholar 

  50. Zhou ZL, Wang YL, Wu QMJ, Yang C-N, Sun XM (2017) Effective and efficient global context verification for image copy detection. IEEE Trans Inf Forensic Secur 12(1):48– 63

    Article  Google Scholar 

  51. Zhou ZL, Yang C-N, Chen B, Sun XM, Liu Q, Wu QJ (2016) Effective and efficient image copy detection with resistance to arbitrary rotation. IEICE Trans Inf Syst E99-D(6):1531–1540

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported in part by National NSF of China (No. 61571139, No. 61201393), New Star of Pearl River on Science and Technology of Guangzhou (No. 2014J2200085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaowei Weng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, S., Pan, JS., Jiehang, D. et al. Pairwise IPVO-based reversible data hiding. Multimed Tools Appl 77, 13419–13444 (2018). https://doi.org/10.1007/s11042-017-4959-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4959-4

Keywords

Navigation