Skip to main content
Log in

The application of interactive dynamic virtual surgical simulation visualization method

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, an interactive dynamic simulation method is proposed to solve computational models of soft tissue undergoing large deformation, collision detection, and volume conservation in medical surgical simulation visualization. During the process of implementation of the interactive dynamic simulation method, the point-based method is used to simulate the elastic solids undergoing large deformations and the position-based method is used to simulate the objects collision, friction and volume conservation. Numerical results demonstrate that the proposed method improves the efficiency and stability of the response of heterogeneous soft tissue undergoing contact or even the multi-organs interactions, and it can be extended to interactive biopsy and cutting simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Basdogan C, Sedef M, Harders M et al (2007) VR-based simulators for training in minimally invasive surgery [J]. IEEE Comput Graph Appl 27(2):54–66

    Article  Google Scholar 

  2. Belytschko T, Lu YY, Gu L (1994) Element-free galerkin methods[J]. Int J Numer Methods Eng 37(37):229–256

    Article  MathSciNet  MATH  Google Scholar 

  3. Bro-Nielsen M (1998) Finite element modeling in surgery simulation[J]. Proc IEEE 86(3):490–503

    Article  Google Scholar 

  4. Cotin S, Delingette H, Ayache N (1999) Real-time elastic deformations of soft tissues for surgery simulation[J]. IEEE Trans Vis Comput Graph 5(1):62–73

    Article  Google Scholar 

  5. Debunne G, Desbrun M, Cani M P, et al (2001) Dynamic Real-time Deformations using Space & Time Adaptive Sampling[C]//Proceedings of the 28th annual conference on Computer graphics and interactive techniques. ACM, 31–36

  6. Diziol R, Bender J, Bayer D (2011) Robust Real-time Deformation of Incompressible Surface Meshes[C]//Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 237–246

  7. Doblare M, Cueto E, Calvo B et al (2005) On the employ of meshless methods in biomechanics[J]. Comput Methods Appl Mech Eng 194(6):801–821

    Article  MATH  Google Scholar 

  8. Gerszewski D, Bhattacharya H, Bargteil AW (2009) A Point-based Method for Animating Elastoplastic Solids[C]//Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 133–138

  9. Gray JP, Monaghan JJ, Swift RP (2001) SPH elastic dynamics[J]. Comput Methods Appl Mech Eng 190(49):6641–6662

    Article  MATH  Google Scholar 

  10. Guilkey JE, Hoying JB, Weiss JA (2006) Computational modeling of multicellular constructs with the material point method[J]. J Biomech 39(11):2074–2086

    Article  Google Scholar 

  11. Hieber SE, Koumoutsakos P (2008) A lagrangian particle method for the simulation of linear and nonlinear elastic models of soft tissue[J]. J Comput Phys 227(21):9195–9215

    Article  MathSciNet  MATH  Google Scholar 

  12. Jones B, Ward S, Jallepalli A et al (2014) Deformation embedding for point-based elastoplastic simulation[J]. ACM Trans Graph 33(2):21

    Article  MATH  Google Scholar 

  13. Kelager M, Niebe S, Erleben K (2010) A Triangle Bending Constraint Model for Position-Based Dynamics[C]\\ VRIPHYS 2010, 10: 31–37

  14. Meier U, López O, Monserrat C et al (2005) Real-time deformable models for surgery simulation: a survey[J]. Comput Methods Prog Biomed 77(3):183–197

    Article  Google Scholar 

  15. Molinari E, Fato M, De Leo G et al (2005) Simulation of the biomechanical behavior of the skin in virtual surgical applications by finite element method[J]. IEEE Trans Biomed Eng 52(9):1514–1521

    Article  Google Scholar 

  16. Monaghan JJ (2005) Smoothed particle hydrodynamics[J]. Rep Prog Phys 68(8):1703

    Article  MathSciNet  Google Scholar 

  17. Müller M (2008) Hierarchical Position based Dynamics[C]\\ VRIPHYS 2008

  18. Müller M, Charypar D, Gross M (2003) Particle-Based Fluid Simulation for Interactive Applications[C]. Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2003, 154–159

  19. Müller M, Heidelberger B, Hennix M et al (2007) Position based dynamics[J]. J Vis Commun Image Represent 18(2):109–118

    Article  Google Scholar 

  20. Müller M, Keiser R, Nealen A, et al (2004) Point based Animation of Elastic, Plastic and Melting Objects[C]//Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation. Eurographics Association, 141–151

  21. Nealen A, Müller M, Keiser R, et al (2006) Physically based Deformable Models in Computer Graphics[C]//Computer Graphics Forum. Blackwell Publishing Ltd, 25(4): 809–836

  22. Payan Y (2012) Soft tissue biomechanical modeling for computer assisted surgery[M]. Springer, Berlin Heidelberg, pp 283–321

  23. Peterlík I, Duriez C, Cotin S (2012) Modeling and real-time simulation of a vascularized liver tissue[M]. Springer, Berlin Heidelberg, pp 50–57

    Google Scholar 

  24. Terzopoulos D, Fleischer K (1988) Deformable models[J]. Vis Comput 4(6):306–331

    Article  Google Scholar 

  25. Terzopoulos D, Platt J, Barr A et al (1987) Elastically deformable models[C]//ACM siggraph computer graphics. ACM 21(4):205–214

    Google Scholar 

  26. Teschner M, Heidelberger B, Muller M, et al (2004) A Versatile and Robust Model for Geometrically Complex Deformable Solids[C]//Computer Graphics International, 2004. Proceedings. IEEE, 312–319

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Shandong Province under Grant No. ZR2015FM013, the National Natural Science Foundation of China under Grant No. 61502279, the National key research and development project of China under Grant No.2016YFC0801406, the National key research and development project of the Shandong Province under Grant No. 2016GSF120012, and by Special Project Fund of Taishan Scholars of Shandong Province, Leading Talent Project of Shandong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjun Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Ma, Y., Wang, Y. et al. The application of interactive dynamic virtual surgical simulation visualization method. Multimed Tools Appl 76, 25197–25214 (2017). https://doi.org/10.1007/s11042-016-4331-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4331-0

Keywords

Navigation