Skip to main content
Log in

A robust multimedia surveillance system for people counting

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Closed circuit television cameras (CCTV) are widely used in monitoring. This paper presents an intelligent CCTV crowd counting system based on two algorithms that estimate the density of each pixel in each frame and use it as a basis for counting people. One algorithm uses scale-invariant feature transform (SIFT) features and clustering to represent pixels of frames (SIFT algorithm) and the other uses features from accelerated segment test (FAST) corner points with SIFT features (SIFT-FAST algorithm). Each algorithm is designed using a novel combination of pixel-wise, motion-region, grid map, background segmentation using Gaussian mixture model (GMM) and edge detection. A fusion technique is proposed and used to validate the accuracy by combining the result of the algorithms at frame level. The proposed system is more practical than the state of the art regression methods because it is trained with a small number of frames so it is relatively easy to deploy. In addition, it reduces the training error, set-up time, cost and open the door to develop more accurate people detection methods. The University of California (UCSD) and Mall datasets have been used to test the proposed algorithms. The mean deviation error, mean squared error and the mean absolute error of the proposed system are less than 0.1, 16.5 and 3.1, respectively, for the Mall dataset and less than 0.07, 5.5 and 1.9, respectively, for UCSD dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Adegboye AO (2013) Single pixel robust approach for background subtraction for fast people-counting and direction estimation. University of Pretoria, Dissertation

    Google Scholar 

  2. Adegboye A, Hancke G, Jr GH (2012) Single-pixel approach for fast people counting and direction estimation. South. Africa Telecommun, Networks Appl

    Google Scholar 

  3. Al-Zaydi ZQH, Ndzi DL, Yang Y, Kamarudin ML (2016) An adaptive people counting system with dynamic features selection and occlusion handling. J Vis Commun Image Represent 39:218–225. doi:10.1016/j.jvcir.2016.05.018

    Article  Google Scholar 

  4. Antonini G, Thiran JP (2004) Trajectories clustering in ICA space an application to automatic counting of pedestrians in video sequences. Adv. Concepts Intell. Vis, Syst

    Google Scholar 

  5. Benezeth Y, Jodoin P-M, Emile B et al (2010) Comparative study of background subtraction algorithms. J Electron Imaging 19:33003. doi:10.1117/1.3456695

    Article  Google Scholar 

  6. Berndt D, Clifford J (1994) Using dynamic time warping to find patterns in time series. Report, AAAI

    Google Scholar 

  7. Bottesch T, Markus K, Kaechele M, Ulm U (2016) Speeding up k -means by approximating Euclidean distances via block vectors. Int. Conf. Mach. Learn, In, pp. 2578–2586

    Google Scholar 

  8. Bouwmans T, El Baf F, Vachon B (2008) Background modeling using mixture of Gaussians for foreground detection - a survey. Recent Patents Comput Sci 1:219–237. doi:10.2174/2213275910801030219

    Article  Google Scholar 

  9. Brostow GJ, Cipolla R (2006) Unsupervised Bayesian detection of independent motion in crowds. IEEE Conf Comput Vis Pattern Recognit. doi:10.1109/CVPR.2006.320

    Google Scholar 

  10. Çelik H, Hanjalić A, Hendriks EA (2006) Towards a robust solution to people counting. Int. Conf. Image Process, In, pp. 2401–2404

    Google Scholar 

  11. Chan AB, Vasconcelos N (2009) Bayesian poisson regression for crowd counting. In: IEEE Int. Conf, Comput. Vis. IEEE, pp. 545–551

    Google Scholar 

  12. Chan AB, Vasconcelos N (2012) Counting people with low-level features and bayesian regression. IEEE Trans Image Process 21:2160–2177. doi:10.1109/TIP.2011.2172800

    Article  MathSciNet  MATH  Google Scholar 

  13. Chan AB, Liang ZSJ, Vasconcelos N (2008) Privacy preserving crowd monitoring: counting people without people models or tracking. IEEE Conf Comput Vis Pattern Recognit. doi:10.1109/CVPR.2008.4587569

    Google Scholar 

  14. Chan A, Morrow M, Vasconcelos N (2009) Analysis of crowded scenes using holistic properties. In: Perform. Eval, Track. Surveill. Work. IEEE, pp. 101–108

    Google Scholar 

  15. Chen K, Kamarainen J-K (2014) Learning to count with back-propagated information. Int. Conf. Pattern Recognit. IEEE, In, pp. 4672–4677

    Google Scholar 

  16. Chen K, Loy CC, Gong S, Xiang T (2012) Feature Mining for Localised Crowd Counting. Br Mach Vis Conf. doi:10.5244/C.26.21

    Google Scholar 

  17. Chen K, Gong S, Xiang T, Loy CC (2013) Cumulative attribute space for age and crowd density estimation. In: IEEE Conf. Comput, Vis. Pattern Recognit, pp. 2467–2474

    Google Scholar 

  18. Cheriyadat AM, Bhaduri BL, Radke RJ (2008) Detecting multiple moving objects in crowded environments with coherent motion regions. IEEE Conf Comput Vis Pattern Recognit Work. doi:10.1109/CVPRW.2008.4562983

    Google Scholar 

  19. Cho SY, Chow TW (1999) A fast neural learning vision system for crowd estimation at underground stations platform. Neural Process Lett 10(2):111–120

    Article  Google Scholar 

  20. Cho S-Y, Chow T, Leung C (1999) A neural-based crowd estimation by hybrid global learning algorithm. IEEE Trans Syst Man, Cybern Part B Cybern 29:535–541. doi:10.1109/3477.775269

    Article  Google Scholar 

  21. Chow TWS, Yam JYF, Cho SY (1999) Fast training algorithm for feedforward neural networks: application to crowd estimation at underground stations. Artif Intell Eng 13:301–307. doi:10.1016/S0954-1810(99)00016-3

    Article  Google Scholar 

  22. Conte D, Foggia P, Percannella G et al (1743–1746) (2010) counting moving people in videos by salient points detection. Int. Conf. Pattern Recognit. pp, In

    Google Scholar 

  23. Conte D, Foggia P, Percannella G et al (2010) A method for counting people in crowded scenes. In: IEEE Int. Conf, Adv. Video Signal Based Surveill, pp. 225–232

    Google Scholar 

  24. Conte D, Foggia P, Percannella G, Vento M (2013) Counting moving persons in crowded scenes. Mach Vis Appl 24:1029–1042. doi:10.1007/s00138-013-0491-3

    Article  Google Scholar 

  25. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE Conf. Comput, Vis. Pattern Recognit, pp. 886–893

    Google Scholar 

  26. Davies A, Yin JH, Velastin S (1995) Crowd monitoring using image processing. Electron Commun Eng J. doi:10.1049/ecej:19950106

    Google Scholar 

  27. Dollar P, Belongie S, Perona P (2010) The fastest pedestrian detector in the west. Br Mach Vis Conf. doi:10.5244/C.24.68

    Google Scholar 

  28. Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D (2010) Object detection with discriminative trained part based models. IEEE Trans Pattern Anal Mach Intell 32:1627–1645

    Article  Google Scholar 

  29. Fradi H, Dugelay JL (2012) Low level crowd analysis using frame-wise normalized feature for people counting. Int. Work. Inf. Forensics Secur, In, pp. 246–251

    Google Scholar 

  30. Gao L, Wang Y, Ye X, Wang J (2016) Crowd Pedestrian Counting Considering Network Flow Constraints in Videos. arXiv Prepr

  31. Ge W, Collins RT (2009) Marked point processes for crowd counting. In: Comput. Vis, Pattern Recognit. Work. IEEE, pp. 2913–2920

    Google Scholar 

  32. Hafeezallah A, Abu-Bakar S (2016) Crowd counting using statistical features based on curvelet frame change detection. Multimed Tools Appl. doi:10.1007/s11042-016-3869-1

    Google Scholar 

  33. Harville M (2002) Stereo person tracking with adaptive plan-view statistical templates. Proc. ECCV Work. Stat. Methods Video Process, In, pp. 67–72

    Google Scholar 

  34. Hashimoto K, Morinaka K, Yoshiike N et al (1997) People count system using multi-sensing application. Int. Solid State Sensors Actuators Conf, In, pp. 1291–1294

    Google Scholar 

  35. Hou YL, Pang GKH (2011) People counting and human detection in a challenging situation. IEEE Trans Syst Man, Cybern Part ASystems Humans 41:24–33. doi:10.1109/TSMCA.2010.2064299

    Article  Google Scholar 

  36. Hu X, Zheng H, Chen Y, Chen L (2015) Dense crowd counting based on perspective weight model using a fisheye camera. Int J Light Electron Opt 126:123–130. doi:10.1016/j.ijleo.2014.08.132

    Article  Google Scholar 

  37. Hu Y, Chang H, Nian F et al (2016) Dense crowd counting from still images with convolutional neural networks. J Vis Commun Image Represent 38:530–539. doi:10.1016/j.jvcir.2016.03.021

    Article  Google Scholar 

  38. Huang X, Zou Y, Wang Y (2016) Cost-sensitive sparse linear regression for crowd counting with imbalanced training data. IEEE Int. Conf. Multimed, Expo

    Book  Google Scholar 

  39. Intelcom DILAX (2015) Public Transport https://www.dilax.com/. Accessed 1 Oct 2016

  40. Jeong CY, Choi S, Han SW (2013) A method for counting moving and stationary people by interest point classification. In: IEEE Int. Conf, Image Process. IEEE, pp. 4545–4548

    Google Scholar 

  41. Joshi NS, Choubey NS (2014) Comparison of traditional approach for edge detection with soft computing approach. Int J Comput Appl 96:17–23

    Google Scholar 

  42. Kaur G, Virk IS (2014) Edge detection through fuzzy system using type I format. Int J Comput Appl 102:24–27

    Google Scholar 

  43. Kilambi P, Ribnick E, Joshi AJ et al (2008) Estimating pedestrian counts in groups. Comput Vis Image Underst 110:43–59. doi:10.1016/j.cviu.2007.02.003

    Article  Google Scholar 

  44. Kong D, Gray D, Tao H (2005) Counting pedestrians in crowds using viewpoint invariant training. Procedings Br Mach Vis Conf. doi:10.5244/C.19.63

    Google Scholar 

  45. Kong D, Gray D, Tao H (2006) A viewpoint invariant approach for crowd counting. Int. Conf. Pattern Recognit, In, pp. 1187–1190

    Google Scholar 

  46. Leibe B, Seemann E, Schiele B (2005) Pedestrian detection in crowded scenes. In: IEEE Conf. Comput, Vis. Pattern Recognit, pp. 878–885

    Google Scholar 

  47. Lempitsky V, Zisserman A (2010) Learning to count objects in images. Adv. Neural Inf. Process. Syst, In, pp. 1324–1332

    Google Scholar 

  48. Li J, Huang L, Liu C (2011) Robust people counting in video surveillance: dataset and system. Int. Conf. Adv. Video Signal Based Surveill, In, pp. 54–59

    Google Scholar 

  49. Lin S, Chen J, Chao H (2001) Estimation of number of people in crowded scenes using perspective transformation. IEEE Trans Syst Man Cybern 31:645–654

    Article  Google Scholar 

  50. Loy C, Chen K, Gong S, Xiang T (2013) Crowd counting and profiling: methodology and evaluation. Model. Simul. Vis. Anal. Crowds. Springer New York, In, pp. 347–382

    Google Scholar 

  51. Ltd B (2013) Use CCTV to Count People http://www.videoturnstile.com/. Accessed 1 Oct 2016

  52. Ma R, Li L, Huang W, Tian Q (2004) On pixel count based crowd density estimation for visual surveillance. In: IEEE Conf. Cybern, Intell. Syst. IEEE, pp. 1–3

    Google Scholar 

  53. Ma H, Zeng C, Ling CX (2012) A reliable people counting system via multiple cameras. ACM Trans Intell Syst Technol 3:1–22. doi:10.1145/2089094.2089107

    Article  Google Scholar 

  54. Merad D, Aziz KE, Thome N (2010) Fast people counting using head detection from skeleton graph. Adv. Video Signal Based Surveill. IEEE, In, pp. 233–240

    Google Scholar 

  55. Norris C, Mccahill M, Wood D (2004) Editorial. The growth of CCTV: a global perspective on the international diffusion of video surveillance in publicly accessible space. Surveill Soc 2:110–135

    Google Scholar 

  56. Rabaud V, Belongie S (2006) Counting crowded moving objects. In: IEEE Conf. Comput, Vis. Pattern Recognit, pp. 705–711

    Google Scholar 

  57. Rao AS, Gubbi J, Marusic S, Palaniswami M (2015) Estimation of crowd density by clustering motion cues. Vis Comput 31:1533–1552. doi:10.1007/s00371-014-1032-4

    Article  Google Scholar 

  58. Rodriguez M, Superieure EN, Laptev I et al (2011) Density-aware person detection and tracking in crowds. Int. Conf. Comput. Vis. IEEE, In, pp. 2423–2430

    Google Scholar 

  59. Ryan DA (2013) Crowd monitoring using computer vision. Queensland University of Technology, Dissertation

    Google Scholar 

  60. Ryan D, Denman S, Fookes C, Sridharan S (2009) Crowd counting using multiple local features. Digit. Image Comput. Tech. Appl. IEEE, In, pp. 81–88

    Google Scholar 

  61. Ryan D, Denman S, Fookes C, Sridharan S (2014) Scene invariant multi camera crowd counting. Pattern Recogn Lett 44:98–112. doi:10.1016/j.patrec.2013.10.002

    Article  Google Scholar 

  62. Ryan D, Denman S, Sridharan S, Fookes C (2015) An evaluation of crowd counting methods, features and regression models. Comput Vis Image Underst 130:1–17. doi:10.1016/j.cviu.2014.07.008

    Article  Google Scholar 

  63. Saleh SAM, Suandi SA, Ibrahim H (2015) Recent survey on crowd density estimation and counting for visual surveillance. Eng Appl Artif Intell 41:103–114. doi:10.1016/j.engappai.2015.01.007

    Article  Google Scholar 

  64. Shbib R, Zhou S, Ndzi D, Al-kadhimi K (2013) Distributed monitoring system based on weighted data fusing model. Am J Soc Issues Humanit 3:53–62

    Google Scholar 

  65. ShopperTrak (2013) ShopperTrak Solutions http://www.shoppertrak.com/. Accessed 1 Oct 2016

  66. Shrivakshan GT, Chandrasekar C (2012) A Comparison of various Edge Detection Techniques used in Image Processing Int J Comput Sci Issues:9

  67. Sidla O, Lypetskyy Y, Brändle N, Seer S (2006) Pedestrian detection and tracking for counting applications in crowded situations. IEEE Int Conf Video Signal Based Surveill. doi:10.1109/AVSS.2006.91

    Google Scholar 

  68. Sobral A, Vacavant A (2014) A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Comput Vis Image Underst 122:4–21. doi:10.1016/j.cviu.2013.12.005

    Article  Google Scholar 

  69. Tang NC, Lin Y-Y, Weng M, Liao HM (2015) Cross-camera knowledge transfer for Multiview people counting. IEEE Trans Image Process 24:80–93. doi:10.1109/TIP.2014.2363445

    Article  MathSciNet  Google Scholar 

  70. Technology A (2013) Our customers http://www.peoplecounting.co.uk/our-customers. Accessed 1 Oct 2016

  71. Topkaya IS, Erdogan H, Porikli F (2014) Counting people by clustering person detector outputs. In: IEEE Int. Conf, Adv. Video Signal Based Surveill. IEEE, pp. 313–318

    Google Scholar 

  72. Tu J, Zhang C, Hao P (2013) Robust real-time attention-based head-shoulder detection for video surveillance. In: IEEE Int. Conf, Image Process. IEEE, pp. 3340–3344

    Google Scholar 

  73. Tuzel O, Porikli F, Meer P (2008) Pedestrian detection via classification on Riemannian manifolds. IEEE Trans Pattern Anal Mach Intell. doi:10.1109/TPAMI.2008.75

    MATH  Google Scholar 

  74. Wang M (2014) Data assimilation for agent-based simulation of smart environment. Georgia State University, Dissertation

    Google Scholar 

  75. Wang M, Wang X (2011) Automatic adaptation of a generic pedestrian detector to a specific traffic scene. In: IEEE Conf. Comput, Vis. Pattern Recognit, pp. 3401–3408

    Google Scholar 

  76. Wang J, Fu W, Liu J et al (2014) Spatiotemporal group context for pedestrian counting. IEEE Trans Circuits Syst Video Technol 24:1620–1630

    Article  Google Scholar 

  77. Wu B, Nevatia R (2007) Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors. Int J Comput Vis 75:247–266. doi:10.1007/s11263-006-0027-7

    Article  Google Scholar 

  78. Xiaohua L, Lansun S, Huanqin L (2006) Estimation of crowd density based on wavelet and support vector machine. Trans Inst Meas Control 28:299–308. doi:10.1191/0142331206tim178oa

    Article  Google Scholar 

  79. Xing X, Wang K, Lv Z (2015) Fusion of gait and facial features using coupled projections for people identification at a distance. Signal Process Lett 22:2349–2353

    Article  Google Scholar 

  80. Xu B, Qiu G (2016) Crowd density estimation based on rich features and random projection Forest. IEEE Winter Appl. Comput. Vis, In, pp. 1–8

    Google Scholar 

  81. Zhang J, Tan B, Sha F, He L (2011) Predicting pedestrian counts in crowded scenes with rich and high-dimensional features. IEEE Trans Intell Transp Syst 12:1037–1046. doi:10.1109/TITS.2011.2132759

    Article  Google Scholar 

  82. Zhang C, Li H, Wang X (2015a) Cross-scene crowd counting via deep convolutional neural networks. Proc IEEE Conf Comput Vis Pattern Recognit. doi:10.1109/CVPR.2015.7298684

    Google Scholar 

  83. Zhang Z, Wang M, Geng X (2015b) Crowd counting in public video surveillance by label distribution learning. Neurocomputing 166:151–163. doi:10.1016/j.neucom.2015.03.083

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeyad Q. H. Al-Zaydi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Zaydi, Z.Q.H., Ndzi, D.L., Kamarudin, M.L. et al. A robust multimedia surveillance system for people counting. Multimed Tools Appl 76, 23777–23804 (2017). https://doi.org/10.1007/s11042-016-4156-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4156-x

Keywords

Navigation