Skip to main content
Log in

Adaptive robust video broadcast via satellite

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

With increasing demand for multimedia content over channels with limited bandwidth and heavy packet losses, higher coding efficiency and stronger error resiliency is required more than ever before. Both the coding efficiency and error resiliency are two opposing processes that require appropriate balancing. On the source encoding side the video encoder H.264/AVC can provide higher compression with strong error resiliency, while on the channel error correction coding side the raptor code has proven its effectiveness, with only modest overhead required for the recovery of lost data. This paper compares the efficiency and overhead of both the raptor codes and the error resiliency techniques of video standards so that both can be balanced for better compression and quality. The result is also improved by confining the robust stream to the period of poor channel conditions by adaptively switching between the video streams using switching frames introduced in H.264/AVC. In this case the video stream is initially transmitted without error resiliency assuming the channel to be completely error free, and then the robustness is increased based on the channel conditions and/or user demand. The results showed that although switching can increase the peak signal to noise ratio in the presence of losses but at the same time its excessive repetition can be irritating to the viewers. Therefore to evaluate the perceptual quality of the video streams and to find the optimum number of switching during a session, these streams were scored by different viewers for quality of enhancement. The results of the proposed scheme show an increase of 3 to 4 dB in peak signal to noise ratio with acceptable quality of enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. 3GPP TS 26.346 V7.4.0. (2007) Technical specification group services and system aspects; multimedia broadcast/multicast service; protocols and codecs

  2. Ahmad S, Hamzaoui R, Al-Akaidi MM (2011) Unequal error protection using fountain codes with applications to video communication. IEEE Trans Multimedia 13(1):92–120

    Article  Google Scholar 

  3. Alphand O, Berthou P, Gayraud T, Combes S (2005) QoS architecture over DVB-RCS satellite networks in a NGN framework. Proceedings of IEEE globcom 2005

  4. Altaf M, Fleury M, Ghanbari M (2011) Resilient video stream switching for mobile wireless channels. J Mob Multimedia (JMM) 7(3):216–235

    Google Scholar 

  5. Bernardini R, Durigon M, Rinaldo RR, Vitali A (2005) Comparison between multiple description and single description video coding with forward error correc-tion. In: Proc. of 7th IEEE Workshop on Multimedia Signal Processing 1–4

  6. Byers JW, Luby M, Mitzenmacher M (2002) A digital fountain approach to asynchronous reliable multicast. IEEE J Sel Areas Commun 20(8):1528–1540

    Article  Google Scholar 

  7. Cataldi P, Shatarski MP, Grangetto M, Magli E (2006) Implementation and performance evaluation of LT and Raptor codes for multimedia applications. International Conference on Intelligent Information Hiding and Multimedia Signal Processing 263–266

  8. Chatziparaskevas P, Koltsidas G, Pavlidou F-N (2011) On the fairness of return channel capacity allocation in DVB-RCS-based satellite networks. Int J Satell Commun Netw 29:163–184

    Article  Google Scholar 

  9. Choi BS, Suh DY (2009) Peer-to-peer scalable video streaming using Raptor code. In: Proc. of 1st IEEE International Conference on Ubiquitous and Future Networks 137–141

  10. Donner A, Bovelli S, Shabdanov S (2002) Reliable multicast based on DVB-RCS. 20th AIAA international communication satellite systems conference and exhibit

  11. ETSI EN 302 304 (2004) Digital Video Broadcasting (DVB): Transmission System for Handheld Terminals (DVB-H) European Telecom-munication Standard, (2004) http://www.dvb-h-online.org/technology

  12. Gardikis G, Zotos N, Kourtis A (2009) Satellite media broadcast with adaptive coding and modulation. Int J Digit Multimed Broadcast 1–10

  13. Ghanbari M (2003) Standard Codecs: image compression to advanced video coding. Stevenage IET Press, UK

    Book  Google Scholar 

  14. Gotta A, Barsocchi P (2008) Experimental video broadcasting in DVB-RCS/S2 with land mobile satellite channel: a reliability issue. IEEE Int Workshop Satell Space Commun 234–238

  15. Hellge C, Gomez-Barquero D, Schierl T, Wie-gand T (2011) Layer-aware forward error correction for mobile broadcast of layered media. IEEE Trans Multimedia 13(3):551–562

    Article  Google Scholar 

  16. Intelligent Streaming, https://technet.microsoft.com/en-us/library/cc732815.aspx

  17. Karczewicz RK (2003) The SP- and SI-frames design for H.264/AVC. IEEE Trans Circuits Syst Video Technol 13(7):637–644

    Article  Google Scholar 

  18. Kumar S, Xu L, Mandal MK, Panchanathan S (2003) Error resiliency schemes in H.264/AVC standard. Elsevier J Vis Commun Image Representation (Special issue on Emerging H.264/AVC Video Coding Standard) 17(2):1–26

  19. Kushwaha H, Xing Y, Chandramouli R, Heffes H (2008) Reliable multimedia Transmission over cognitive radio networks using fountain codes. Proc IEEE 96(1):155–165

    Article  Google Scholar 

  20. Luby M (2002) LT codes. In: Proc. of the 43rd Annual IEEE Symposium on Foundations of Computer Science 271–280

  21. Luby M, Gasiba T, Stockhammer T, Watson M (2007) Reliable multimedia download delivery in cellular broadcast networks. IEEE Trans Broadcast 53(1):235–246

    Article  Google Scholar 

  22. Neale J, Green R, Landovskis J (2004) Interactive channel for multimedia satellite networks. IEEE Commun Mag 39(3):192–198

    Article  Google Scholar 

  23. Osterman J, Bormans J, List P, Marpe D, Narroschke M, Pereira F, Stockhammer T, Wiegand T (2004) Video coding with H.264/AVC: tools, performance and complexity. IEEE Circuits Syst Mag 7–28

  24. Pandya AU, Trapasiya SD, Chinnam SS (2013) Performance analysis of AL-FEC raptor code over 3GPP EMBS networks. Int J Renew Energy Technol 2(4):601–608

    Google Scholar 

  25. Qualcomm Raptor Technology - Forward Error Correction

  26. Schierl T, Ganger K, Hellge C (2006) Svc-based multisource streaming for robust video transmission in mobile ad hoc networks. IEEE Wirel Commun 13(5):96–103

    Article  Google Scholar 

  27. Shokrollahi A (2004) Raptor codes. In: Proc. IEEE International Symposium on Information Theory

  28. Shokrollahi A (2006) Raptor codes. IEEE Trans Inf Theory 52(6):2551–2567

    Article  MathSciNet  MATH  Google Scholar 

  29. Skinnemoen H, Leirvik R, Hetland J, Fanebust H, Paxal V (2004) Interactive IP-network via satellite DVB-RCS. IEEE J Sel Areas Commun 22(3):508–517

    Article  Google Scholar 

  30. Skinnemoen H, Rigal C, Yun A, Erup L, Alagha N, Ginesi A (2013) DVB-RCS2 overview. Int J Satell

  31. Soldani C, Leduc G, Verdicchio F, Munteanu A (2006) Multiple description coding versus transport layer FEC for resilient video transmission. In: Proc. of International Conference on Digital Telecommunications

  32. Son N, Jeong S (2008) An effective error concealment for H.264/AVC. IEEE 8th International Conference on Computer and Information Technology Workshops 385–390

  33. Stockhammer T, Hannuksela MM, Wiegand T (2003) H.264/AVC in wireless environments. IEEE Trans Circuits Syst Video Technol 13(7):657–673

    Article  Google Scholar 

  34. Stockhammer T, Zia W (2007) Error-resilient coding and decoding strategies for video communication. In: Chou PA, van der Schaar M (eds) Multimedia in IP and wireless networks. Academic, Burlington, pp 13–58

    Chapter  Google Scholar 

  35. Streaming media basics, http://service.real.com/help/library/guides/helixproducer/htmfiles/realsyst.htm

  36. Thomos N, Pulikkoonattu R, Frossard P. Intermediate performance analysis of growth codes arXiv:1211.4014 [cs.IT]

  37. Vars V, Hannuksela MN (2001) Non-normative error concealment algorithms. ITU-T SGI6 Doc., VCEG-N62

  38. Wenger S (2003) H.264/AVC over IP. IEEE Trans Circuits Syst Video Technol 13(7):645–656

    Article  Google Scholar 

  39. Why digital fountain raptor code is better than reed-solomon erasure codes for streaming applications, white paper, copy right (c) 2005, digital foundation, Inc

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Altaf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altaf, M., Khan, F.A., Qadri, N. et al. Adaptive robust video broadcast via satellite. Multimed Tools Appl 76, 7785–7801 (2017). https://doi.org/10.1007/s11042-016-3426-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3426-y

Keywords

Navigation