Skip to main content
Log in

A Web video retrieval method using hierarchical structure of Web video groups

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a Web video retrieval method that uses hierarchical structure of Web video groups. Existing retrieval systems require users to input suitable queries that identify the desired contents in order to accurately retrieve Web videos; however, the proposed method enables retrieval of the desired Web videos even if users cannot input the suitable queries. Specifically, we first select representative Web videos from a target video dataset by using link relationships between Web videos obtained via metadata “related videos” and heterogeneous video features. Furthermore, by using the representative Web videos, we construct a network whose nodes and edges respectively correspond to Web videos and links between these Web videos. Then Web video groups, i.e., Web video sets with similar topics are hierarchically extracted based on strongly connected components, edge betweenness and modularity. By exhibiting the obtained hierarchical structure of Web video groups, users can easily grasp the overview of many Web videos. Consequently, even if users cannot write suitable queries that identify the desired contents, it becomes feasible to accurately retrieve the desired Web videos by selecting Web video groups according to the hierarchical structure. Experimental results on actual Web videos verify the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. In this paper, we call video materials on the Web “Web videos”.

  2. http://www.youtube.com

  3. In this paper, the method in [12] is improved by automatically deciding the number of hierarchies exhibited to users on the basis of modularity.

  4. When a child Web video group is divided into its child Web video groups, this child Web video group is considered to be the parent Web video group of its child Web video groups.

  5. In the experiment, we used YouTube Data API v2 to obtain the links, “related videos”.

References

  1. Allaire G, Kaber SM (2008) Numerical Linear Algebra. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  2. Arenas A, Duch J, Fernandez A, Gomez S (2007) Size reduction of complex networks preserving modularity. New J Phys 9(176):604–632

    MathSciNet  Google Scholar 

  3. Astola J, Haavisto P, Neuvo Y (1990) Vector median filters. Proc. IEEE, pp 678–689

  4. Brachman R (1983) What is-a is and isn’t: An analysis of taxonomic links in semantic networks. IEEE Comput 16(10):30–36

    Article  Google Scholar 

  5. Butafogo RA, Schneiderman B (1991) Identifying aggregates in hypertext structures. Proc. 3rd ACM Conf. Hypertext, pp 63–74

  6. Cheng X, Dale C, Liu J (2008) Statistics and social network of youtube videos. Proc. IEEE Int. Workshop on Quality of Service, pp 229–238

  7. Fan J, Elmagarmid AK, Zhu XWGA, Wu L (2004) Classview: Hierarchical video shot classification, indexing and accessing. IEEE Trans Multimedia 6(1):70–86

    Article  Google Scholar 

  8. Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315(5814):972–976

    Article  MathSciNet  MATH  Google Scholar 

  9. Gantz J, Reinsel D (2012) The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in the far east. IDC iView

  10. Gargi U, Wenjun L, Vahab M, Sangho Y (2011) Large-scale community detection on youtube for topic discovery and exploration. Proc. Int. AAAI Conf. Weblogs and Social Media, pp 486–489

  11. González FA, Caicedo JC, Nasraoui O, Ben-Abdallah J (2010) Nmf-based multimodal image indexing for querying by visual example. Proc. ACM Int. Conf. Image and Video Retrieval, pp 366– 373

  12. Harakawa R, Hatakeyama Y, Ogawa T, Haseyama M (2013) An extraction method of hierarchical web communities for web video retrieval. Proc. IEEE Int. Conf. Image Processing, pp 4397–4401

  13. Haseyama M, Ogawa T (2013) Trial realization of human-centered multimedia navigation for video retrieval. Int J Hum Comput Interact 29(2):96–109

    Article  Google Scholar 

  14. Haseyama M, Ogawa T, Yagi N (2013) A review of video retrieval based on image and video semantic understanding. ITE Trans MTA 1(1):2–9

    Google Scholar 

  15. Hatakeyama Y, Haseyama M (2010) An effective visualization method based on web community extraction using hyperlink between web videos and its application to retrieval. Proc. Int. Tech. Conf. Circuits/Systems, Computers and Communications, pp 371–374

  16. Hatakeyama Y, Ogawa T, Asamizu S, Haseyama M (2009) A novel video retrieval method based on web community extraction using features of video materials. IEICE Trans Fundam E92-A(8):1961– 1969

    Article  Google Scholar 

  17. Hindle A, Shao J, Lin D, Lu J, Zhang R (2011) Clustering web video search results based on integration of multiple features. World Wide Web 14(1):53–73

    Article  Google Scholar 

  18. Kamie M, Hashimoto T, Kitagawa H (2012) Effective web video clustering using playlist information. Proc. ACM Symp. Applied Computing, pp 949–956

  19. Kleinberg JM (1999) Authoritative sources in a hyperlinked environment. J ACM 46(5):604–632

    Article  MathSciNet  MATH  Google Scholar 

  20. Miller GA (1995) Wordnet: A lexical database for english. Commun ACM 38 (11):39–41

    Article  Google Scholar 

  21. Nagasaka A, Tanaka Y (1991) Automatic video indexing and fullvideo search for object appearances. Proc. IFIP 2nd Working Conf. Visual Database Systems, pp 113–127

  22. Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69:026113

    Article  Google Scholar 

  23. Ngo CW, Pong TC, Zhang HJ (2002) On clustering and retrieval of video shots through temporal slices analysis. IEEE Trans Multimedia 4(4):446–458

    Article  Google Scholar 

  24. Nielsen A (2002) Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data. IEEE Trans Image Processing 11(3):293–305

    Article  Google Scholar 

  25. Nitanda N, Haseyama M (2007) Audio-based shot classification for audiovisual indexing using pca, mgd and fuzzy algorithm. IEICE Trans Fundamentals E90-A (8):1542–1548

    Article  Google Scholar 

  26. Papadopoulos S, Kompatsiaris Y, Vakali A, Spyridonos P (2012) Community detection in social media. Data Min Knowl Disc 24(3):515–554

    Article  Google Scholar 

  27. Ross DA, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1-3):125–141

    Article  Google Scholar 

  28. Sang J, Xu C (2011) Browse by chunks: Topic mining and organizing on web-scale social media. ACM Trans Multimedia Comput Commun Appl 18:1–30. 7S(1),30

    Article  Google Scholar 

  29. Sebastiani F (2002) Machine learning in automated text categorization. ACM Comput Surv 34(1):1– 47

    Article  Google Scholar 

  30. Taskiran C, Chen JY, Albiol A, Torres L, Bouman CA, Delp EJ (2004) Vibe: A compressed video database structured for active browsing and search. IEEE Trans Multimedia 6(1):103–118

    Article  Google Scholar 

  31. Wang Y, Belkhatir M, Tahayna B (2012) Near-duplicate video retrieval based on clustering by multiple sequence alignment. Proc. ACM Int. Conf. Multimedia, pp 941–944

Download references

Acknowledgments

This work was partly supported by Grant-in-Aid for Scientific Research (B) 25280036, Japan Society for the Promotion of Science (JSPS), and Grant-in-Aid for Scientific Research on Innovative Areas 24120002 from the MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke Harakawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harakawa, R., Ogawa, T. & Haseyama, M. A Web video retrieval method using hierarchical structure of Web video groups. Multimed Tools Appl 75, 17059–17079 (2016). https://doi.org/10.1007/s11042-015-2976-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2976-8

Keywords

Navigation