Skip to main content
Log in

Action boundaries detection in a video

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In the video analysis domain, automatic detection of actions performed in a recorded video represents an important scientific and industrial challenge. This paper presents a new method to approximate the boundaries of actions performed by a person while interacting with his environment (such as moving objects). This method relies on a Codebook quantization method to analyze the rough evolution of each pixel and then decide whether this evolution corresponds to an action or not; this decision is taken by an automated system. Statistics are then produced - at the scale of the whole frame - to estimate the start and the end of an action. According to our proposed evaluation protocol, this method produces interesting results on both real and simulated videos. This statistic-based protocol is discussed at the end of this paper. The interpretation of this evaluation protocol nominates this method to be a solid base to localize the exact boundaries of actions or - in the framework of this research activity - to associate prescriptive text with a visual content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. A pixel’s RGB value (R, G, B) matches the codeword C if, and only if, the point (R, G, B) - in the RGB system - is located inside the cylinder corresponding to C.

  2. Synchronization of a video with the text that describes its content

References

  1. Ambata LU, Caluyo FS (2012) Background change detection using wavelet transform. TENCON 2012 I.E. Region 10 Conference, pp. 1–6. doi: 10.1109/tencon.2012.6412298.

  2. Bouwmans T (2011) Recent Advanced Statistical Background Modeling for Foreground Detection - A Systematic Survey. Recent Patents Comput Sci 4:147–176

    Google Scholar 

  3. Cucchiara R, Grana C, Piccardi M, Prati A (2003) Detecting moving objects, ghosts and shadows in video streams. IEEE Trans Pattern Anal Mach Intell 25:1337–1342. doi:10.1109/tpami.2003.1233909

    Article  Google Scholar 

  4. Elgammal A, Duraiswami R, Harwood D, Davis LS (2002) Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proc IEEE 90:1151–1163. doi:10.1109/JPROC.2002.801448

    Article  Google Scholar 

  5. Fihl P, Corlin R, Park S, Moeslund TB, Trivedi MM (2006) Tracking of individuals in very long video sequences. Adv Vis Comput Lect Notes Comput Sci 4291:60–69. doi:10.1007/11919476_7

    Article  Google Scholar 

  6. Geng L, Xiao Z (2011) Real Time Foreground-Background Segmentation Using Two-Layer Codebook Model. International Conference on Control. Aut Syst Eng(CASE) 1:1–5. doi:10.1109/ICCASE.2011.5997546

    Google Scholar 

  7. Gibbins D, Newsam GN, Brooks MJ (1996) Detecting suspicious background changes in video surveillance of busy scenes. Proceedings Third IEEE Workshop on Applications of Computer Vision, pp. 22–26. doi: 10.1109/acv.1996.571990

  8. Gong Y, Sin LT, Chuan CH, Zhang H, Sakauchi M (1995) Automatic Parsing of TV Soccer Programs. International Conference on Multimedia Computing and Systems 1:167–174. doi:10.1109/MMCS.1995.484921

    Article  Google Scholar 

  9. Horprasert T, Harwood D, Davis LS (1999) A statistical approach for real-time robust background subtraction and shadow detection. IEEE Int Conf Comp Vis 99:1–19

    Google Scholar 

  10. Kim K, Chalidabhongse TH, Harwood D, Davis L (2005) Real-time foreground - background segmentation using codebook model. Real-time Imaging 11:172–185. doi:10.1016/j.rti.2004.12.004

    Article  Google Scholar 

  11. Leykin A, Ran Y, Hammoud R (2007) Thermal-visible video fusion for moving target tracking and pedestrian classification. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. doi:10.1109/CVPR.2007.383444

  12. MathWorks laboratories (2013) Scene Change Detection System (vipscenechange). Computer Vision System Toolbox in MATLAB (R2013a). http://fr.mathworks.com/help/vision/examples/scene-change-detection.html, Accessed 1 December 2014.

  13. Radke RJ, Andra S, Al-Kofahi O, Roysam B (2005) Image Change Detection Algorithms - A Systematic Survey. IEEE Trans Image Process 14:294–307. doi:10.1109/tip.2004.838698

    Article  MathSciNet  Google Scholar 

  14. Rodriguez-Gomez R, Fernandez-Sanchez EJ, Diaz J, Ros E (2012) Codebook hardware implementation on FPGA for background subtraction. J Real-Time Image Proc 10:43–57. doi:10.1007/s11554-012-0249-6

    Article  Google Scholar 

  15. Rui Y, Gupta A, Acero A (2000) Automatically Extracting Highlights for TV Baseball Programs. Proceedings of the eighth ACM international conference on Multimedia, pp. 105–115. doi: 10.1145/354384.354443.

  16. Sigari MH, Fathy M (2008) Real-time Background Modeling/Subtraction using Two-Layer Codebook Model. Proc Int MultiConference Eng Comp Scientists (IMECS) 1:717–720

    Google Scholar 

  17. Stauffer C, Grimson WEL (1999) Adaptive background mixture models for real-time tracking. IEEE Comp Soc Conf Comp Vision PattRecog 2:252. doi:10.1109/CVPR.1999.784637

    Google Scholar 

  18. Subudhi BN, Ghosh S, Ghosh A (2013) Change detection for moving object segmentation with robust background construction under Wronskian framework. Mach Vis Appl 24:795–809. doi:10.1007/s00138-012-0475-8

    Article  Google Scholar 

  19. Sudhir G, Lee JCM, Jain AK (1998) Automatic classification of tennis video for high-level content-based retrieval. Proceedings of IEEE International Workshop on Content-Based Access of Image and Video Database 1:81–90. doi:10.1109/caivd.1998.646036

    Article  Google Scholar 

  20. Szwoch G, Ellwart D, Czyżewski A (2012) Parallel implementation of background subtraction algorithms for real-time video processing on a supercomputer platform. J Real-Time Image Proc. doi:10.1007/s11554-012-0310-5

    Google Scholar 

  21. Wren CR, Azarbayejani A, Darrell T, Pentland AP (1997) Pfinder: Real-time tracking of the human body. IEEE Trans Pattern Anal Mach Intell 19:780–785. doi:10.1109/34.598236

    Article  Google Scholar 

  22. Zhang D, Chang SF (2002) Event detection in baseball video using superimposed caption recognition. Proceedings of the tenth ACM international conference on Multimedia, pp. 315–318. doi: 10.1145/641007.641073.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Wehbe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wehbe, H., Haidar, B. & Joly, P. Action boundaries detection in a video. Multimed Tools Appl 75, 8239–8266 (2016). https://doi.org/10.1007/s11042-015-2748-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2748-5

Keywords

Navigation