Skip to main content
Log in

Arithmetic coding using hierarchical dependency context model for H.264/AVC video coding

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, a hierarchical dependency context model (HDCM) is firstly proposed to exploit the statistical correlations of DCT (Discrete Cosine Transform) coefficients in H.264/AVC video coding standard, in which the number of non-zero coefficients in a DCT block and the scanned position are used to capture the magnitude varying tendency of DCT coefficients. Then a new binary arithmetic coding using hierarchical dependency context model (HDCMBAC) is proposed. HDCMBAC associates HDCM with binary arithmetic coding to code the syntax elements for a DCT block, which consist of the number of non-zero coefficients, significant flag and level information. Experimental results demonstrate that HDCMBAC can achieve similar coding performance as CABAC at low and high QPs (quantization parameter). Meanwhile the context modeling and the arithmetic decoding in HDCMBAC can be carried out in parallel, since the context dependency only exists among different parts of basic syntax elements in HDCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bjontegaard G (2001) Calculation of average PSNR differences between RD-curves. In: Doc. ITU-T VCEG (VCEG-M33). Austin, Texas, USA

  2. Bjontegaard G, Lillevold K (2002) Context-adaptive VLC (CVLC) coding of coefficients. In: Doc. joint video team ofISO/IEC MPEG & ITU-T VCEG (JVT-C028)

  3. Chen S, Chen S, Sun S (2010) P3-CABAC: A nonstandard tri-thread parallel evolution of CABAC in the many core era. IEEE Trans Circuits Syst Video Technol 20 (6):920–924

    Article  Google Scholar 

  4. Francesc A (2014) Entropy-based evaluation of context models for wavelet-transformed images. IEEE Trans Image Process 24(1):1778–1791

    MathSciNet  Google Scholar 

  5. Gao M, Fan X, Wang Q, Zhao D, Gao W (2011) A parallel context model for level information in CABAC, visual communications and image processing

  6. Kim W, Cho K, Chung K (2011) Multi-threaded syntax element partitioning for parallel entropy decoding. IEEE Trans Consumer Electronics 57(2):897–905

    Article  Google Scholar 

  7. Lam Y, Goodman W (2000) A mathematical analysis of the DCT coefficient distributions of images. IEEE Trans Image Process 9(10):1661–1666

    Article  MATH  Google Scholar 

  8. Marpe D, Schwarz H, Wiegand T (2003) Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard. IEEE Trans Circuits Syst Video Technol 13(7):620–636

    Article  Google Scholar 

  9. Marpe D, Schwarz H, Wiegand T (2010) Entropy coding in video compression using probability interval partitioning. In: Proceedings picture coding symposium

  10. Moffat A, Neal R, Witten I (1995), Arithmetic coding revisited. IEEE international conference on data compression conference

  11. Rissanen J (1983) A universal data compression system. IEEE Trans Inform Theory 29(5):656–664

    Article  MathSciNet  MATH  Google Scholar 

  12. Sole J, Joshi R, Nguyen N, Ji T, Karczewicz M, Clare G, Henry F, Duenas A (2012) Transform coefficient coding in HEVC. IEEE Trans Circuits Syst Video Technol 22(12):1765–1777

    Article  Google Scholar 

  13. Sullivan G, Wiegand T (1998) Rate-distortion optimization for video compression. IEEE Signal Process Mag 15(6):74–90

    Article  Google Scholar 

  14. Sullivan G, Ohm J, Han W, Wiegand T (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans Circuits Syst Video Technol 22 (12):1649–1668

    Article  Google Scholar 

  15. Sze V, Budagavi M (2008) Parallel CABAC for low power video coding. In: Proceedings IEEE international conference on image process

  16. Sze V, Budagavi M (2012) High throughput CABAC entropy coding in HEVC. IEEE Trans Circuits Syst Video Technol 22(12):1778–1791

    Article  Google Scholar 

  17. Taubman D (2000) High performance scalable image compression with EBCOT. IEEE Trans Image Process 9(7):1158–1170

    Article  Google Scholar 

  18. Wang Q, Zhao D, Gao W, Ma S (2005) High efficiency context-based variable length coding with parallel orientation, Pacific Rim conference on multimedia

  19. Weinberger M, Rissanen J, Arps B (1996) Applications of universal context modeling to lossless compression of gray-scale images. IEEE Trans Image Process 5 (4):575–586

    Article  Google Scholar 

  20. Weinberger M, Seroussi G, Sapiro G (2000) The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans Image Process 9(8):1309–1324

    Article  Google Scholar 

  21. Wiegand T, Sullivan G, Bjontegaard G, Luthra A (2003) Overview of the H.264/AVC video coding standard. IEEE Trans Circuits Syst Video Technol 13 (7):560–576

    Article  Google Scholar 

  22. Wu X (1997) Lossless compression of continuous-tone images via context selection, quantization, and modeling. IEEE Trans Image Process 6(5):656–664

    Article  Google Scholar 

  23. Wu X, Memon N (1997) Context-based, adaptive, lossless image coding. IEEE Trans Commun 45(4):437–444

    Article  Google Scholar 

  24. Wu J, Xu Z, Jeon G, Zhang X, Jiao L (2013) Arithmetic coding for image compression with adaptive weight-context classification. Signal Process Image Commun 28(7):727–735

    Article  Google Scholar 

  25. Xu M, Wu X, Franti P (2006) Context quantization by kernel fisher discriminant. IEEE Trans Image Process 15(1):169–177

    Article  Google Scholar 

  26. Yu L, Chen S, Wang J (2009) Overview of AVS-video coding standards. Signal Process Image Commun 24(4):247–262

    Article  Google Scholar 

  27. Zhang L, Wang Q, Zhang N, Zhao D, Wu X, Gao W (2009) Context-based entropy coding in AVS standard. Signal Process Image Commun 24 (4):263–276

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Major State Basic Research Development Program of China (973 Program 2015CB351804) and the National Science Foundation of China (NSFC) under grant 61272386.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Wang, Q., Zhao, D. et al. Arithmetic coding using hierarchical dependency context model for H.264/AVC video coding. Multimed Tools Appl 75, 7351–7370 (2016). https://doi.org/10.1007/s11042-015-2651-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2651-0

Keywords

Navigation