Skip to main content
Log in

Orientation Relationships and Changes in the Composition of S2 Titanium Silicides in Titanium Pseudo-β-Alloy VT47

  • Published:
Metal Science and Heat Treatment Aims and scope

The orientation relationships between the β-phase and the S2 silicides (Ti, Zr)6Si3 (a = 0.7055 nm, c = 0.3673 nm) in titanium pseudo-β-alloy VT47 are studied. The distribution of the crystallographic directions on an inverse pole figure in the β-phase coordinates is presented. A large sample of silicides is studied, and absence of single orientation relationships between the β-phase and the S2 silicides in the alloy after rolling and annealing is inferred. Variants of nucleation of S2 silicides are considered on the basis of the theory of nucleation and of data on the Ti – Zr – Si system. Amechanism of the loss of β/S2 orientation relationships in the process of thermomechanical treatment of the alloy is suggested. The Ti/Zr proportion at a constant content of Si is shown to grow with the sizes of the silicides. The silicide particles affect the initial aging state of alloy VT47. They serve free surfaces for nucleation and growth of β-phase during aging and make its distribution more uniform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. E. Zhao, S. Sun, and Y. Zhang, “Recent advances in silicon containing high temperature titanium alloys,” J. Mater. Res. Technol., 14, 3029 – 3042 (2021). https://doi.org/10.1016/j.jmrt.2021.08.117

    Article  CAS  Google Scholar 

  2. Y. Su, G. Hao, H. Fan, et al., “Study on rolling of a new near-α titanium alloy: Microstructure refinement and dual-scale silicides evolution,” J. Alloys Compd., 852, Art. 156867 (2021). https://doi.org/10.1016/j.jallcom.2020.156867

  3. M.-L. Antii, V. C. Ciprés, J. Mouzon, et al., “Effect of silicon on creep properties of titanium 6Al – 2Sn – 4Zr – 2Mo alloy,” MATEC Web Conf., 321, Art. 04021 (2020). https://doi.org/10.1051/matecconf/202032104021

  4. A. P. Woodfield, P. J. Postans, M. H. Loretto and R. E. Smallman, “The effect of long-term high temperature exposure on the structure and properties of the titanium alloy Ti 5331S,” Acta Metall., 36(3), 507 – 515 (1988). https://doi.org/10.1016/0001-6160(88)90082-X

    Article  CAS  Google Scholar 

  5. P. L. Narayana, S. V. Kim, J. K. Hong, et al., “Tensile properties of a newly developed high-temperature titanium alloy at room temperature and 650°C,” Mater. Sci. Eng. A, 718(7), 287 – 291 (2018). https://doi.org/10.1016/j.msea.2018.01.113

    Article  CAS  Google Scholar 

  6. M. Bulanova, S. Firstov, I. Gornaya, and D. Miracle, “The melting diagram of the Ti-corner of the Ti – Zr – Si system and mechanical properties of as-cast compositions,” J. Alloys Compd., 384, 106 – 114 (2004). https://doi.org/10.1016/j.jallcom.2004.02.060

    Article  CAS  Google Scholar 

  7. N. H. Salpadoru and H. M. Flower, “Phase equilibria and transformations in a Ti – Zr – Si system,” Metall. Mater. Trans. A, 26A, 243 – 257 (1995). https://doi.org/10.1007/BF02664663

    Article  CAS  Google Scholar 

  8. H. M. Flower, P. R. Swann, and D. R. F.West, “Silicide precipitation in the Ti – Zr – Al – Si system,” Metall. Trans., 2, 3289 – 3297 (1971). https://doi.org/10.1007/BF02811609

    Article  CAS  Google Scholar 

  9. A. K. Singh, C. Ramachandra, and V. Singh, “Orientation relationship between matrix phases and silicide S2 in alloy Ti – 6Al – 1.6Zr – 3.3Mo – 0.3Si,” J. Mater. Sci. Lett., 11, 218 – 221 (1992). https://doi.org/10.1007/BF00741426

    Article  CAS  Google Scholar 

  10. A. A. Popov,M. O. Leder,M. A. Popova, et al., “Effect of alloying on precipitation of intermetallic phases in heat-resistant titanium alloys,” Phys. Met. Metallogr., 116(3), 261 – 266 (2015). https://doi.org/10.1134/S0031918X15030102

    Article  Google Scholar 

  11. A. A. Popov and M. A. Popova, “Isothermal diagrams of precipitation of silicide and aluminide phases in refractory titanium alloys,” Met. Sci. Heat. Treat., 58, 662 – 666 (2017). https://doi.org/10.1007/s11041-017-0075-3

    Article  CAS  Google Scholar 

  12. Z. Zhang, J. Fan, Z. Wu, et al., “Precipitation behavior and strengthening-toughening mechanism of hot rolled sheet of T65 titanium alloy during aging process,” J. Alloys Compd., 831, Art. 154786 (2020). https://doi.org/10.1016/j.jallcom.2020.154786

  13. H. B. Ba, L. M. Dong, Z. Q. Zhang, et al., “Effects of Zr content on the microstructures and tensile properties of Ti – 3Al – 8V – 6Cr – 4Mo – xZr alloys,” Acta Metall. Silica (English Letters), 29, 722 – 726 (2016). https://doi.org/10.1007/s40195-016-0443-9

    Article  CAS  Google Scholar 

  14. A. A. Popov, M. A. Zhilyakova, O. Elkina, and K. I. Lugovaya, “The precipitation of silicide particles in heat-resistant titanium alloys,” in: S. Syngellakis and J. J. Connor (eds.), Innovation and Discovery in Russian Science and Engineering, Springer International Publishing AG, pp. 19 – 25. https://doi.org/10.1007/978-3-319-66354-8 3

  15. C. Ramachandra and K. Singh, “Orientation relationships between titanium and silicide S2 in alloy Ti – 6Al – 5Zr – 0.5Mo – 0.25Si,” Metall. Trans. A, 16A, 453 – 455 (1985). https://doi.org/10.1007/BF02814344

    Article  CAS  Google Scholar 

  16. A. K. Sigh and C. Ramachandra, “Characterization of silicides in high-temperature titanium alloys,” J. Mater. Sci., 32, 229 – 234 (1997). https://doi.org/10.1023/A:1018516324856

    Article  Google Scholar 

  17. X. D. Zhang, D. J. Evans, W. A. Baeslack, and W. A. Fraser, “Effect of long term aging on the microstructural stability and mechanical properties of Ti – 6Al – 2Cr – 2Mo – 2Sn – 2Zr alloy,” Mater. Sci. Eng. A, 344, 300 – 311 (2003). https://doi.org/10.1016/S0921-5093(02)00448-3

    Article  Google Scholar 

  18. B. Fu, H. Wang, C. Zou, and Z. Wei, “The influence of Zr content on microstructure and precipitation of silicide in as-cast near α titanium alloys,” Mater. Charact., 99, 17 – 24 (2015). https://doi.org/10.1016/j.matchar.2014.09.015

    Article  CAS  Google Scholar 

  19. Yu.M. Lakhtin and V. P. Leont’eva, The Science of Materials, A Study Aid for Higher Educational Engineering Institutions [in Russian], Mashinostroenie, Moscow (1990), 528 p.

  20. R.W. Cahn and P. T. Haasen, Physical Metallurgy, Vol. 2, Phase Transformations in Metals and Alloys with Special Physical Properties [Russian translation], Metallurgiya, Moscow (1987), 624 p.

  21. A K. Singh, T. Roy, and C. Ramachandra, “Microstructural stability on aging of an α + β titanium alloy: Ti – 6Al – 1.6Zr – 3.3Mo – 0.3Si,” Metall. Mater. Trans. A, 27A, 1167 – 1173 (1996). https://doi.org/10.1007/BF02649855

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zavodov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 7, pp. 40 – 48, July, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavodov, A.V., Shiryaev, A.A. & Nochovnaya, N.A. Orientation Relationships and Changes in the Composition of S2 Titanium Silicides in Titanium Pseudo-β-Alloy VT47. Met Sci Heat Treat 65, 432–440 (2023). https://doi.org/10.1007/s11041-023-00951-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-023-00951-w

Keywords

Navigation