Skip to main content

Advertisement

Log in

Effect of Annealing Temperature and Thickness of Magnetron Sputtered Ni/Ti Film on Its Microstructure and Nanoindentation Behavior

  • FUNCTIONAL ALLOYS
  • Published:
Metal Science and Heat Treatment Aims and scope

The dependence of microstructure and mechanical properties on the thickness of Ni/Ti coatings deposited on a Si(100) substrate by magnetron sputtering and on the temperature of their subsequent annealing is studied. The thickness and the surface roughness of the coatings are determined using profilometry and atomic force microscopy. Nanoindentation is used to determine the penetration resistance, the hardness, and the modulus of elasticity. The layers with minimum thickness are shown to possess the highest mechanical properties. Annealing conducted after the sputtering results in gradual retardation of the process of coarsening of atomic clusters and improvement of the mechanical properties of the layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. “MEMS materials and processes handbook,” Choice Rev. Online, 49, 49–0882 (2011). https://doi.org/10.5860/choice.49-0882

  2. M. Kohl, B. Krevet, M. Ohtsuka, et al., “Ferromagnetic shape memory microactuators,” Mater. Trans., 47, 639 – 644 (2006).

    Article  CAS  Google Scholar 

  3. E. Makino, T. Mitsuya, and T. Shibata, “Fabrication of TiNi shape memory micropump,” Sens. Actuator. A Phys., 88, 256 – 262 (2001).

    Article  CAS  Google Scholar 

  4. J. J. Gill, D. J. Chang, L. A. Momoda, and G. P. Carman, “Manufacturing issues of thin film NiTi microwrapper,” Sens. Actuator. A Phys., 93, 148 – 156 (2001.

    Article  CAS  Google Scholar 

  5. D. Xu D., L.Wang, G. Ding, et al., “Characteristics and fabrication of NiTi/Si diaphragm micropump,” Sens. Actuator. A Phys., 93, 87 – 92 (2001).

  6. B. O’Brien,W. M. Carroll, and M. J. Kelly, “Passivation of nitinol wire for vascular implants — a demonstration of the benefits,” Biomaterials, 23, 1739 – 1748 (2002).

    Article  Google Scholar 

  7. M. Bendahan, P. Canet, J. L. Seguin, and H. Carchano, “Control composition study of sputtered Ni – Ti shape memory alloy film,” Mater. Sci. Eng. B, 34, 112 – 115 (1995).

    Article  Google Scholar 

  8. J. Van Humbeeck, “Shape memory alloys: A material and a technology,” Adv. Eng. Mater., 3, 837 – 850 (2001).

    Article  Google Scholar 

  9. A. Kumar, D. Singh, and D. Kaur, “Grain size effect on structural, electrical and mechanical properties of NiTi thin films deposited by magnetron co-sputtering,” Surf. Coatings Technol., 203, 1596 – 1603 (2009).

    Article  CAS  Google Scholar 

  10. A. Ishida and V. Martynov, “Sputter-deposited shape-memory alloy thin films: Properties and applications,” MRS Bull., 27, 111 – 114 (2002).

    Article  CAS  Google Scholar 

  11. S. Miyazaki, Y. Q. Fu, and W. M. Huang, Thin Film Shape Memory Alloys: Fundamentals and Device Applications, Cambridge Iniversity Press (2009), 160 p.

  12. A. Gyobu, Y. Kawamura, T. Saburi, and M. Asai, “Two-way shape memory effect of sputter-deposited Ti-rich Ti – Ni alloy films,” Mater. Sci. Eng. A, 312, 227 – 231 (2001).

    Article  Google Scholar 

  13. A. Ishida, M. Sato, A. Takei, et al., “Effect of aging on shape memory behavior of Ti – 51.3 at. Pct Ni thin films,” Metall. Mater. Trans. A, 27, 3753 – 3759 (1996).

    Article  Google Scholar 

  14. S. Kajiwara, T. Kikuchi, K. Ogawa, et al., “Strengthening of Ti – Ni shape-memory films by coherent subnanometric plate precipitates,” Philos. Mag. Lett., 74, 137 – 144 (1996).

    Article  CAS  Google Scholar 

  15. A. Ishida, M. Sato, A. Takei, and S. Miyazaki, “Effect of heat treatment on shape memory behavior of Ti-rich Ti – Ni thin films,” Mater. Trans. JIM, 36, 1349 – 1355 (1995).

    Article  CAS  Google Scholar 

  16. L. Zhang, C. Xie, and J.Wu, “Oxidation behavior of sputter-deposited Ti – Ni thin films at elevated temperatures,” Mater. Charact., 58, 471 – 478 (2007).

    Article  Google Scholar 

  17. E. Quandt, C. Halene, H. Holleck, et al., “Sputter deposition of TiNi, TiNiPd and TiPd films displaying the two-way shape-memory effect,” Sens. Actuator. A Phys., 53, 434 – 439 (1996).

    Article  CAS  Google Scholar 

  18. S. Yu. Kondrat’ev, G. Ya. Yaroslavskii, and B. S. Chaikovskii, “Classification of high-damping metallic materials,” Strength Mater., 18(10), 1325 – 1329 (1986).

  19. S. Yu. Kondrat’ev, O. G. Zotov, G. Ya. Yaroslavskii, et al., “Investigation of interrelationship between damping capacity and mechanical properties as well as morphology of martensite in alloys with reversible martensite transformation,” Prob. Prochn., 14B(3), 79 – 82 (1983).

  20. S. Yu. Kondrat’ev, G. Ya. Yaroslavsii, B. S. Chaikovskii, and V. V. Matveev, “Effect of doping and hardening conditions on mechanical properties and microstructure of Br.A10 alloy,” Prob. Prochn., 7(145), 98 – 101(1981).

  21. J. Rao, T. Roberts, K. Lawson, and J. Nicholls, “Nickel titanium and nickel titanium hafnium shape memory alloy thin films,” Surf. Coat. Technol., 204, 2331 – 2336 (2010).

    Article  CAS  Google Scholar 

  22. J. L. He, K. W. Won, C. T. Chang, et al., “Cavitation-resistant TiNi films deposited by using cathodic arc plasma ion plating,” Wear, 233 – 235, 104 – 110 (1999).

    Article  Google Scholar 

  23. T. Girardeau, K. Bouslykhane, J. Mimault et al., “Wear improvement and local structure in nickel-titanium coatings produced by reactive ion sputtering,” Thin Solid Films, 283, 67 – 74 (1996).

    Article  CAS  Google Scholar 

  24. D. J.Wever, A. G. Veldhuizen, J. De Vries et al., “Electrochemical and surface characterization of a nickel–titanium alloy,” Biomaterials, 19, 761 – 769 (1998).

    Article  CAS  Google Scholar 

  25. W. Ni, Y. T. Cheng, M. Lukitsch, et al., “Novel layered tribological coatings using a superelastic NiTi interlayer,” Wear, 259, 842 – 848 (2005).

    Article  CAS  Google Scholar 

  26. X. G. Ma and K. Komvopoulos, “Pseudoelasticity of shape-memory titanium-nickel films subjected to dynamic nanoindentation,” Appl. Phys. Lett., 84, 4274 – 4276 (2004).

    Article  CAS  Google Scholar 

  27. W. Ni, Y. T. Cheng, and D. S. Grummon, “Recovery of microindents in a nickel-titanium shape-memory alloy: A “self-healing” effect,” Appl. Phys. Lett., 80, 3310 – 3312 (2002).

    Article  CAS  Google Scholar 

  28. H. Pelletier, D. Muller, P. Mille, and J. J. Grob, “Structural and mechanical characterisation of boron and nitrogen implanted NiTi shape memory alloy,” Surf. Coat. Technol., 158 – 159, 309 – 317 (2002).

    Article  Google Scholar 

  29. Y. Zhang, Y. T. Cheng, and D. S. Grummon, “Indentation stress dependence of the temperature range of microscopic superelastic behavior of nickel-titanium thin films,” J. Appl. Phys., 98, 033505 (2005).

    Article  Google Scholar 

  30. E. Wibowo and C. Y. Kwok, “Fabrication and characterization of sputtered NiTi shape memory thin films,” J. Micromech. Microeng., 16, 101 – 108 (2006).

    Article  CAS  Google Scholar 

  31. K. S. S. E. Raju, S. Bysakh, M. A. Sumesh et al., “The effect of ageing on microstructure and nanoindentation behaviour of dc magnetron sputter deposited nickel rich NiTi films,” Mater. Sci. Eng. A, 476, 267 – 273 (2008).

    Article  Google Scholar 

  32. G. M. Pharr and W. C. Oliver, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res., 19, 3 – 20 (2004).

    Article  Google Scholar 

  33. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., 7, 1564 – 1583 (1992).

    Article  CAS  Google Scholar 

  34. A. Behera and S. Aich, “Characterisation and properties of magnetron sputtered nanoscale bi-layered Ni/Ti thin films and effect of annealing,” Surf. Interface Anal., 47(8), 805 – 814 (2015).

    Article  CAS  Google Scholar 

  35. A. Behera, R. Suman, S. Aich, and S. S. Mohapatra, “Sputter-deposited Ni/Ti double-bilayer thin film and the effect of intermetallics during annealing,” 49(7), 620 – 629 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit Behera.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 3, pp. 40 – 45, March, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patro, S., Saxena, K.K. & Behera, A. Effect of Annealing Temperature and Thickness of Magnetron Sputtered Ni/Ti Film on Its Microstructure and Nanoindentation Behavior. Met Sci Heat Treat 65, 167–172 (2023). https://doi.org/10.1007/s11041-023-00909-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-023-00909-y

Keywords

Navigation