Skip to main content
Log in

Problems of Simulation of Carbon Mass Transfer from Low-Pressure Saturating Atmosphere into Steel

  • SIMULATION
  • Published:
Metal Science and Heat Treatment Aims and scope

The boundary conditions for describing the mass transfer of carbon from a low-pressure oxygen-free atmosphere into steel under vacuum carburizing are analyzed. Experimental results and thermodynamic calculations are used to determine the numerical value of the activity of carbon in an environment of low-pressure acetylene. The calculated value of the carbon potential is used in the boundary condition of kind III in the form of a Langmuir expression applied to a mathematical model of vacuum carburizing based on numerical solution of the diffusion equation. The calculated concentration profiles are shown to describe adequately the experimental results. Different nonequilibrium processes of vacuum carburizing of steels are shown to have similarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. W. Grafen and B. Edenhofer, “Acetylene low-pressure carburizing — a novel and superior carburizing technology,” Heat Treat. Met., 26(4), 79 – 85 (1999).

    CAS  Google Scholar 

  2. F. J. Otto and D. H. Herring, “Vacuum carburizing of aerospace and automotive materials,” Heat Treat. Progr., 5(1), 33 – 37 (2005).

    CAS  Google Scholar 

  3. P. Kula, J. Olejnik, and J. Kowalewski, “New vacuum carburizing technology,” Heat Treat. Progr., 1(1), 57 – 65 (2001).

    CAS  Google Scholar 

  4. H. Atena and F. Schrank, “Niederdruck-Aufkohlung mit Hochdruck- Gasabschreckung: Grundlagen, Einsatzmöglichkeiten und Anlagentechnik,” Härterei-technische Mitteilungen, 4(57), 247 – 256 (2002).

    Google Scholar 

  5. M. Yu. Semenov, A. E. Smirnov, and M. Yu. Ryzhova, “Computation of carbon concentration curves in vacuum carburizing of steels,” Metal Sci. Heat Treat., 55(1 – 2), 38 – 42 (2013).

  6. E. Wołowiec-Korecka, “Methods of data mining for modelling of low-pressure heat treatment,” J. Achiev. Mater. Manuf., 85(1), 31 – 40 (2017).

    Google Scholar 

  7. N. M. Ryzhov, A. E. Smirnov, R. S. Fakhurtdinov, et al., “Special features of vacuum carburizing of heat-resistant steel in acetylene,” Metal Sci. Heat Treat., 46(5 – 6), 230 – 235 (2004).

  8. P. Kula, R. Pietrasik, and K. Dybowski, “Vacuum carburizing- process optimization,” J. Mater. Proc. Technol., 164 – 165, 876 – 881 (2005).

  9. M. M. Ryzhov and M. Yu. Semenov, “Wear resistance of the carburized layer on alloyed steel with excess carbide phase,” J. Frict. Wear, 19(2), 76 – 80 (1998).

    Google Scholar 

  10. E. Wołowiec, P. Kula, Ł. Kołodziejczyk, et al., “Mathematical modelling of the vacuum carburizing process,” Thermal Proc. Gear Solutions, No. 3 – 4, 34 – 40 (2014).

  11. M. Zajusz, K. Tkacs-OEmiech, and M. Danielewski, “Modeling of vacuum pulse carburizing of steel,” Surf. Coat. Technol., 258, 646 – 651 (2014).

    Article  CAS  Google Scholar 

  12. J. Sommeria, “Entropy production in turbulent mixing,” in: Non-Equilibrium Thermodynamics and the Production of Entropy, Springer, Berlin, Heidelberg (2005), pp. 79 – 91.

  13. Yu. S. Eliseev, V. V. Krymov, I. P. Nezhurin, et al., Production of Gears for Gas Turbine Engines [in Russian], Vysshaya Shkola, Moscow (2001), 493 p.

    Google Scholar 

  14. N. M. Ryzhov, A. E. Smirnov, and R. S. Fakhurtdinov, “Control of carbon saturation of the diffusion layer in vacuum carburizing of heat-resistant steels,” Metal Sci. Heat Treat., 46(7 – 8), 340 – 344 (2004).

  15. N. M. Ryzhov, A. S. Smirnov, R. S. Fakhurtdinov, and A. I. Mordovin, “Vacuum carburizing of chromium-nickel steel,” Metal Sci. Heat Treat., 50(1 – 2), 63 – 67 (2008).

  16. A. E. Smirnov, M. Yu. Ryzhov, and M. Yu. Semenov, “Choice of boundary condition for solving the diffusion problem in simulation of the process of vacuum carburizing,” Metal Sci. Heat Treat., 59(3 – 4), 237 – 242 (2017).

  17. V. I. Kasatochkin (ed.), The Structural Chemistry of Carbon and Coals [in Russian], Nauka, Moscow (1969), 67 p.

    Google Scholar 

  18. J. O. Andersson, T. Helander, L. Höglund, et al., “Thermo-Calc & DICTRA, computational tools for materials science,” Calphad, 26(2), 273 – 312 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Semenov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 2, pp. 39 – 43, February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, M.Y., Smirnov, A.E. & Ryzhova, M.Y. Problems of Simulation of Carbon Mass Transfer from Low-Pressure Saturating Atmosphere into Steel. Met Sci Heat Treat 63, 101–105 (2021). https://doi.org/10.1007/s11041-021-00654-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-021-00654-0

Key words

Navigation