Skip to main content
Log in

Morphology of High-Strength Heat-Resistant Steel Powder for Machines for Additive Production from Shavings

  • Published:
Metal Science and Heat Treatment Aims and scope

Results of a study of the production of spherical-shape powder from shavings of high-alloy high-temperature steel 13Kh11N2V2MF (ÉI961) are presented. It is shown that the rate of feeding of the powder into the flow of thermal plasma affects the process of spheroidization of the particles. The chemical composition of the powder is compared to that required by the GOST standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. B. K. Reck and T. E. Graedel, “Challenges in metal recycling,” Science, 337(6095), 690 – 695 (2012).

    Article  Google Scholar 

  2. T. E. Graedel, J. Allwood, J.-P. Birat, et al., “What do we know about metal recycling rates?” J. Ind. Ecology, 15(3), 355 – 366 (2011).

    Article  Google Scholar 

  3. E. G. Zolotnikov and V. V. Maksarov, “Recent processes of retreatment and briquetting of metallic shavings in automated productions,” Zapiski Gorn. Inst., 209, 34 – 41 (2014).

    Google Scholar 

  4. S. J. Seo, K. Asakura, and K. Shibata, “Evaluation of susceptibility to surface hot shortness in Cu-containing steels by tensile test,” ISIJ Int., 37(3), 232 – 239 (1997).

    Article  Google Scholar 

  5. W. Z. Misiolek, M. Haase, N. Ben Khalifa, et al., “High quality extrudates from aluminum chips by new billet compaction and deformation routes,” CIRP Annals, 61(1), 239 – 242 (2012).

    Article  Google Scholar 

  6. J. M. Linag, Z. Zhang, M. T. Jia, et al., “The microstructures and tensile mechanical properties of ultrafine grained and coarse grained Al – 7Si – 0.3Mg alloy rods fabricated form machining chips,” Mater. Sci. Eng. A, 729, 29 – 36 (2018).

    Article  Google Scholar 

  7. Z. Sherafat, M. H. Paydar, and R. Ebrahimi, “Fabrication of Al7075/Al two phase material by recycling Al7075 alloy chips using powder metallurgy route,” J. Alloys Compd., 478(1 – 2), 395 – 399 (2009).

    Article  Google Scholar 

  8. A. Mohr, A. Rottger, M. Windmann, and W. Theisen, “Recycling of metallic chips by electro-discharge sintering,” Materialwissenschaft undWerkstofftechnik, 45(6), 552 – 560 (2014).

    Article  Google Scholar 

  9. F. Yang, S. Raynova, A. Singh, et al., “Producing high-quality titanium alloy by a cost-effective route combining fast heating and hot pressing,” JOM, 70(5), 632 – 637 (2018).

    Article  Google Scholar 

  10. A. I. Rudskoy, A. M. Zolotov, and S. V. Ganin, “Simulation of the process of equal-channel angular pressing of billets from powder compositions based on aluminum and rare-earth metals in capsules,” Tsvet. Met., No. 4, 30 – 35 (2014).

  11. E. W. Lui, S. Palanisamy, M. S. Dargusch, and K. Xia, “Effects of chip conditions on the solid state recycling of Ti – 6Al – 4V machining chips,” J. Mater. Proc. Technol., 238, 297 – 304 (2016).

    Article  Google Scholar 

  12. J. Umada, T. Mimoto, H. Imai, and K. Kondoh, “Powder forming process from machined titanium chips via heat treatment in hydrogen atmosphere,” Mater. Trans., 58(12), 1 – 6 (2017).

    Google Scholar 

  13. X. Goso and A. Kale “Production of titanium metal powder by HDH process,” in: Light Metals Conf. (2010), pp. 292 – 305.

  14. Z. Z. Fang, R. Chandran, and M. Koopman, New Method of Low Cost Production of Titanium Alloys to Reducing Energy Consumption of Mechanical Systems, Technical Report, United States (2016), 219 p.

  15. N. S. Gamba, I. A. Carbajal-Ramos, M. A. Ulla, et al., “Zirconium alloys produced by recycling zircaloy tunings,” J. Alloys Compd., 578, 553 – 558 (2013).

    Article  Google Scholar 

  16. W. E. Frazier, “Metal additive manufacturing: Areview,” J. Mater. Eng. Perform., 23(6), 1917 – 1928 (2014).

    Article  Google Scholar 

  17. T. Wohlers, Wohlers Report 2014: Additive Manufacturing and 3D Printing State of the Industry. Annual Worldwide Progress Report, Wohlers Associates Inc. (2014), 275 p.

  18. A. Uriondo, M. Esperon-Miguez, and S. Perinpanayagam, “The present and future of additive manufacturing in the aerospace sector: Areview of important aspects, in: Proceedings of the Institution of Mechanical Engineers, Part G,” J. Aerospace Eng., 229(11), 2132 – 2147 (2015).

    Google Scholar 

  19. M. I. Boulos, “The inductively coupled R.F. (radio frequency) plasma,” Pure and Appl. Chem., 57(9), 1321 – 1352 (1985).

    Article  Google Scholar 

  20. S. Samal, “Thermal plasma technology: The prospective future in material processing,” J. Cleaner Prod., 142, 3131 – 3150 (2017).

    Article  Google Scholar 

  21. A. I. Rudskoy, K. N. Volkov, S. Yu. Kondrat’ev, and Yu. A. Sokolov, Physical Processes and Technologies of Fabrication of Metallic Powders from Melt [in Russian], Izd. Polytekh. Univ. (2018), 610 p.

  22. Y.-L. Li and T. Ishigaki, “Spheroidization of titanium carbide powders by induction thermal plasma processes,” J. Am. Ceramic Soc., 84(9), 1929 – 1936 (2001).

    Article  Google Scholar 

  23. N. G. Razumov, A. A. Popovich, and Q. S. Wang, “Thermal plasma spheroidization by mechanical alloying,” Metall. Mater. Int., 24(2), 363 – 370 (2018).

    Article  Google Scholar 

  24. S. Kumar and V. Selvarajan, “Spheroidization of metal and ceramic powders in thermal plasma jet,” Comp. Mater. Sci., 36, 451 – 456 (2006).

    Article  Google Scholar 

  25. S. Sun, Z. Ma, Y. Liu, et al., “Induction plasma spheroidization of ZrB2– SiC powders for plasma-spray coating,” J. Europ. Ceram. Soc., 38(9), 3073 – 3082 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Razumov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 11, pp. 23 – 28, November, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razumov, N.G., Popovich, A.A., Grigor’ev, A.V. et al. Morphology of High-Strength Heat-Resistant Steel Powder for Machines for Additive Production from Shavings. Met Sci Heat Treat 60, 710–714 (2019). https://doi.org/10.1007/s11041-019-00344-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-019-00344-y

Key words

Navigation