Skip to main content
Log in

Criteria for Evaluating the Fracture Toughness of Carbon–Carbon Composite Materials

  • Published:
Metal Science and Heat Treatment Aims and scope

The applicability of various criteria for evaluation of the fracture toughness of a discretely reinforced carbon–carbon composite material for friction purposes is considered. The values of the K1c, J1c, Jc and COD criteria of fracture toughness are calculated. The distribution of the fields of displacements and deformations on the surface of specimens is determined by the method of numerical correlation of digital images with the use of a VIC-3D system. The stress fields are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. E. Fitzer, “The future of carbon-carbon composites,” Carbon, 25(2), 163 – 190 (1987).

    Article  CAS  Google Scholar 

  2. J. D. Nuckley and D. D. Edie, Carbon-Carbon Materials and Composites, Noyes, New Jersey (1993), p. 289.

    Google Scholar 

  3. T. Windhorst and G. Blount, “Carbon-carbon composites: a summary of recent developments and applications,” Mater. Design, 18, 11 – 15 (1997).

    Article  CAS  Google Scholar 

  4. G. Savage, Carbon–Carbon Composites, Chapman and Hall, London (1993), p. 389.

    Book  Google Scholar 

  5. A. S. Fialkov, Carbon, Interlayer Compounds and Composites Based on It [in Russian], Aspekt-Press, Moscow (1997), 717 p.

    Google Scholar 

  6. V. Kostopopoulos, Y. P. Markopoulos, Y. Z. Pappas, and S. D. Peteves, “Fracture energy measurements of 2-D carbon–carbon composites,” J. Eur. Ceram. Soc., 18, 69 – 79 (1998).

    Article  Google Scholar 

  7. M. Sakai, T. Miyajima, and M. Inagaki, “Fracture toughness and fiber bridging of carbon fiber reinforced carbon composites,” Comp. Sci. Technol., 40, 231 – 250 (1990).

    Article  Google Scholar 

  8. Xian-Kui Zhu and James A. Joyce, “Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization,” Eng. Fract. Mech., 85, 1 – 46 (2012).

    Article  Google Scholar 

  9. H. Hatta, Y. Kogo, H. Asano, and H. Kawada, “Applicability of fracture toughness concept to fracture behavior of carbon,” Jap. Soc. Mech. Eng. J., Ser. A, 42(2), 265 – 271 (1999).

    CAS  Google Scholar 

  10. D. R. Moore, A. Pavan, and J. G.Williams, Fracture Mechanics Testing Methods for Polymers, Adhesives and Composites, Elsevier (2001), p. 388.

  11. M. S. Aly-Hassan, H. Hatta, S. Wakayama, M. Watanabe, and K. Miyagawa, “Comparison of 2D and 3D carbon/carbon composites with respect to damage and fracture resistance,” Carbon, 41, 1069 – 1078 (2003).

    Article  CAS  Google Scholar 

  12. Y. Kim, “Effect of postpeak tension-softening behavior on the fracture properties of 2-D carbon fiber reinforced carbon composite,” J. Mechan. Sci. Technol., 23, 8 – 13 (2009).

    Article  Google Scholar 

  13. Jun-Ming Su, Zhi-Chao Xiao, Yong-Qiong Liu, et al., “Preparation and characterization of carbon_carbon aircraft brake materials with long service life and good functional properties,” New Carbon Mater., 25(5), 329 – 334 (2010).

    Article  Google Scholar 

  14. T. Krause, Y. Tushtev, D. Koch, and G. Grathwohl, “Interlaminar mode I crack growth energy release rate of carbon/carbon composites,” Eng. Fract. Mech., 100, 38 – 51 (2013).

    Article  Google Scholar 

  15. V. V. Kostikov, A. V. Demin, V. V. Kulakov, et al., “Termar” friction carbon/carbon materials,” in: Recent Problems of Production and Service of Carbon Products [in Russian], Digest, Chelyabinsk (2000), pp. 211 – 212.

  16. A. V. Chichinadze, A. Yu. Albagachiev, V. D. Kozhevnikova, et al., “Assessment of friction and wear characteristics in domestic friction composite materials in loaded aircraft brakes,” J. Frict. Wear, 30(4), 261 – 270 (2009).

    Article  Google Scholar 

  17. ASTM E1820. Standard Test Method for Measurement of Fracture Toughness.

  18. Hailiang Li, Hejun Li, Jinhua Lu, et al., “Improvement in toughness of carbon/carbon composites using multiple matrixes,” Mater. Sci. Eng. A, 530, 57 – 62 (2011).

    Article  CAS  Google Scholar 

  19. Prasad N. Eswara, S. Kumari, S. V. Kamat, et al., “Fracture behaviour of 2D-weaved, silica-silica continuous fibre-reinforced, ceramic-matrix composites (CFCCs),” Eng. Fract. Mech., 71, 2589 – 2605 (2004).

    Article  Google Scholar 

  20. A. G. Paradkar, Ravali N. Shanti, and Prasad N. Eswara, “Mechanical behaviour of 2D and 3D weaved SiC-matrix, carboncontinuous fibre-reinforced composites. Pt. 2. Fracture toughness under static loading conditions,” Eng. Fract. Mech., 182, 52 – 61 (2017).

    Article  Google Scholar 

  21. A. A. Stepashkin, D. Yu. Ozherelkov, Yu. B. Sazonov, et al., “Assessment of fracture toughness of a discretely reinforced carbon/carbon composite material,” Metalloved. Term. Obrab. Met., No. 4, 51 – 58 (2015).

  22. T. Hashida and Victor C. Li, “New development of the J-based fracture testing technique for ceramic-matrix composites,” J. Amer. Ceramic Soc., 77(6), 1553 – 1561 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Ozherelkov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 4, pp. 64 – 70, April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepashkin, A.A., Ozherelkov, D.Y., Sazonov, Y.B. et al. Criteria for Evaluating the Fracture Toughness of Carbon–Carbon Composite Materials. Met Sci Heat Treat 60, 266–272 (2018). https://doi.org/10.1007/s11041-018-0271-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-018-0271-9

Key words

Navigation