Skip to main content
Log in

Effect of Treatment Parameters on Grain Structure and Mechanical Properties of Sheets of Al – 3% Mg Alloy with Zr and Ti Additions

  • Published:
Metal Science and Heat Treatment Aims and scope

The microstructure, mechanical properties and superplasticity indices of sheets of aluminum alloy Al – 3% Mg with 0.3% Zr and 0.1% Ti are studied. Use of low-temperature homogenizing (at 360°C) and two-stage hot rolling (at 360 and 420°C) with intermediate annealing at 420°C (3 h) provides quite good thermal stability of alloy grain structure and improved strength properties at room temperature. The alloy exhibits signs of superplasticity with a constant deformation rate of 5 × 10–3 sec–1 and retains a virtually unrecrystallized structure after 200% deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Here and subsequently through the test alloying element content is shown in weight factions, expressed as a %.

References

  1. V. I. Elagin, Alloying Wrought Aluminum Alloys with Transition Metals [in Russian], Metallurgiya, Moscow (1975).

    Google Scholar 

  2. K. Kannan, C. H. Johnson and C. H. Hamilton, “A study of superplasticity in a modified 5083 Al –Mg – Mn alloy,” Metall. Mater. Trans. A, 29A, 1220 (1998).

    Google Scholar 

  3. D. Y. Maeng, J. H. Lee, and S. I. Hong, “The effect of transition elements on the superplastic behavior of Al – Mg alloys” Mater. Sci. Eng. A, 357, 188 – 195 (2003).

    Article  Google Scholar 

  4. R. Verma, A. K. Ghosh, S. Kimand C. Kim, “Grain refinement and superplasticity in 5083 Al,” Mater. Sci. Eng. A, 191, 143 – 150 (1995).

    Article  Google Scholar 

  5. A. V. Mikhaylovskaya, O. A. Yakovtseva, I. S. Golovin, et al., “Superplastic deformation mechanisms in fine-grained Al – Mg based alloys,” Mater. Sci. Eng. A, 627, 31 – 41 (2015).

    Article  Google Scholar 

  6. J. D. Robson and P. B. Prangnell, “Dispersoid precipitation and process modeling in zirconium containing commercial aluminium alloys,” Acta Mater., 49, 599 – 613 (2001).

    Article  Google Scholar 

  7. Wu Ling-Mei, Wang Wen-Hsiung, Hsu Yung-Fu, and Trong Shan, “Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al – Zn – Mg – Sc – Zr alloy,” J. Alloys Compounds, 456, 163 – 169 (2008).

    Article  Google Scholar 

  8. Christian B. Fuller, David N. Seidman, and David C. Dunand, “Mechanical properties of Al3 (Sc, Zr) alloys at ambient and elevated temperatures,” Acta Mater., 51, 4803 – 4814 (2003).

  9. M. Vlach, I. Stulikova, B. Smola, et al., “Precipitation in cold-rolled Al – Sc – Zr and Al – Mn – Sc – Zr alloys prepared by powder metallurgy,” Mater. Charact., 86, 59 – 68 (2013).

    Article  Google Scholar 

  10. A. Gholinia, F. J. Humphreys, and P. B. Prangnell, “Production of ultra-fine grain microstructures in Al – Mg alloys by conventional rolling,” Acta Mater., 50, 4461 – 4476 (2002).

    Article  Google Scholar 

  11. Wang Ying, Pan Qing-lin, Song Yan-fang, et al., “Recrystallization of Al – 5.8Mg – Mn – Sc – Zr alloy,” Trans. Nonferrous Met. Soc. China, 23, 3235 – 3241 (201).

  12. R. Grimes, C. Baker, M. J. Stowell, and B. M.Watts, “Development of superplastic aluminium alloys,” Aluminium, 51, 720 – 723 (1975).

    Google Scholar 

  13. B. M. Watts, M. J. Stowell, B. L. Baikie, DGE Owen, “Superplasticity in Al – Cu – Zr Alloys, Part II: Microstructural study,” J. Met. Sci., 10, 189 – 197 (1976).

  14. A. V. Mikhailovskaya, Yu. V. Sinageikina, A. D. Kotov, and V. K. Portnoi, “Aluminum alloys with enhanced strength for superplastic forming,” Metal Sci. Heat Treat., 54(7), 345 – 348 (2012).

    Article  Google Scholar 

  15. A. D. Kotov, A. V. Mikhailovskaya, and V. K. Portnoy, “Superplasticity of alloy Al – 11% Zn – 3% Mg – 0.8% Cu – 0.3% Zr with Fe and Ni additives,” Metal Sci. Heat Treat., 55(7 – 8), 364 – 367 (2013).

    Article  Google Scholar 

  16. S. Lee, A. Utsunomiya, H. Akamatsu, et al., “Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al – Mg alloys,” Acta Mater., 50, 563 – 564 (2002).

    Google Scholar 

  17. Z. Y. Ma, R. S. Mishra, M. W. Mahoney, and R. Grimes, “High strain rate superplasticity in friction stir processed Al – Mg – Zr alloy,” Mater. Sci. Eng. A, 351, 148 – 153 (2003).

    Article  Google Scholar 

  18. Z. Y. Ma, R. S. Mishra, M.W. Mahoney, and R. Grimes, “Effect of friction stir processing on the kinetics of superplastic deformation in an Al – Mg – Zr alloy,” Metall. Mater. Trans. A, 36A, 1458 (2005).

    Google Scholar 

  19. T. G. Nieh and J. Wadsworth, “Effects of Zr on the high strainrate superplasticity of 2124 Al,” Scr. Metall., 28, 1119 – 1124 (1993).

    Article  Google Scholar 

  20. A. Mikhaylovskaya, V. Portnoy, A. Mochugovskiy, et al., “Effect of homogenisation treatment on precipitation, recrystallization and properties of Al – 3% Mg – TM alloys (TM = Mn, Cr, Zr),” Mater. Design, 109, 197 – 208 (2016).

    Article  Google Scholar 

  21. A. V. Mikhaylovskaya, A. G. Mochugovskiy, A. D. Kotov, et al., “Superplasticity of clad aluminium alloy,” J. Mater. Proc. Technol., 243, 355 – 364 (2017).

    Article  Google Scholar 

  22. V. S. Zolotorevskiy, N. A. Belov, and M. V. Glazoff, Casting Aluminium Alloys, Elsevier Science, Amsterdam, Nederland (2007).

    Google Scholar 

  23. E. Avtokratova, O. Sitdikov, M. Markushev, and R. Mulyukov, “Extraordinary high-strain rate superplasticity of severely deformed Al – Mg – Sc – Zr alloy,” Mater. Sci. and Eng. A, 538, 386 – 390 (2012).

    Article  Google Scholar 

  24. Yong-yi Peng, Zhi-min Yin, Bo Nie, and Li Zhong, “Effect of minor Sc and Zr on superplasticity of Al – Mg – Mn alloys,” Trans. Nonferrous Metall. Soc. China, 17, 744 – 750 (2007).

    Article  Google Scholar 

  25. F. C. Liu, Z. Y. Ma, and L. Q. Chen, “Low-temperature superplasticity of Al – Mg – Sc alloy produced by friction stir processing,” Scr. Mater., 60, 968 – 971 (2009).

    Article  Google Scholar 

  26. F. Musin, R. Kaibyshev, Y. Motohashi, and G. Itoh, “High strain rate superplasticity in a commercial Al – Mg – Sc alloy,” Scr. Mater. 50, 511 – 516 (2004).

    Article  Google Scholar 

  27. V. K. Portnoy, D. S. Rylov, V. S. Levchenko, and A. V. Mikhaylovskaya, “The influence of chromium on the structure and superplasticity of Al – Mg – Mn alloys,” J. Alloys Compounds, 581, 313 – 317 (2013).

    Article  Google Scholar 

  28. A. V. Mikhailovskaya, I. S. Golovin, A. A. Zaitseva, et al., “Effect of Mn and Cr additions on kinetics of recrystallization and parameters of grain boundary relaxation of Al – 4.9 Mg alloy,” Phys. Metals Metallogr., 114(3), 246 – 255 (2013).

    Article  Google Scholar 

  29. R. Grimes, C. Baker, M. J. Stowell, and B. M.Watts, “Development of superplastic aluminium alloys,” Aluminium, 51, 720 – 723 (1975).

    Google Scholar 

  30. B. M. Watts, M. J. Stowell, B. L. Baikie, and DGE Owen, “Superplasticity in Al – Cu – Zr alloys, Part II: Microstructural study,” J. Met. Sci., 10, 189 – 197 (1976).

    Article  Google Scholar 

  31. V. G. Davydov, T. D. Rostova, V. V. Zakharov, et al., “Scientific principles of making an alloying addition of scandium to aluminium alloys,” Mater. Sci. Eng. A, 280, 30 – 36 (2000).

    Article  Google Scholar 

  32. K. Turba, P. M’alek, and M. Cieslar, “Superplasticity in an Al – Mg – Zr – Sc alloy produced by equal-channel angular pressing,” Mater. Sci. Eng. A, 462, 91 – 94 (2007).

    Article  Google Scholar 

  33. M. V. Mal’tsev, T. A. Barsukova, and F. A. Borin, Nonferrous Metal and Alloy Metallography [in Russian], Gos. Nauch.-Tekhn. Izd. Lit. Chern. Tsvet. Metallurgiya, Moscow (1950).

    Google Scholar 

  34. M. Easton and David St. John, “Grain refinement of aluminum alloys: Part I. The nucleant and solute paradigms—a review of the literature,” Metall. Mater. Trans. A, 30A, 1623 (1999).

Download references

Work was carried out with financial support of the RF inistry of Education and Science within the scope of a VUZ state assignment (project No. 1855) and a program for improving NITU MISiS competitiveness among world scientific and education centers in 2013 – 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Mochugovskii.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 6, pp. 33 – 37, June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mochugovskii, A.G., Mikhailovskaya, A.V., Levchenko, V.S. et al. Effect of Treatment Parameters on Grain Structure and Mechanical Properties of Sheets of Al – 3% Mg Alloy with Zr and Ti Additions. Met Sci Heat Treat 59, 357–362 (2017). https://doi.org/10.1007/s11041-017-0156-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-017-0156-3

Key words

Navigation