Skip to main content
Log in

New Approach to Synthesis of Powder and Composite Materials by Electron Beam. Part 1. Technological Features of the Process

  • Published:
Metal Science and Heat Treatment Aims and scope

Possibilities of electron beam synthesis of structural and tool composite materials are considered. It is shown that a novel process involving mathematical modeling of each individual operation makes it possible to create materials with programmable structure and predictable properties from granules of various specified chemical compositions and sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. G. A. Libenson, V. Yu. Lopatin, and G. V. Komarnitskii, Processes of Powder Metallurgy, Vol. 1. Production of Metallic Powders [in Russian], Izd. MISiS, Moscow (2001), 368 p.

  2. G. A. Libenson, V. Yu. Lopatin, and G. V. Komarnitskii, Processes of Powder Metallurgy, Vol. 2. Forming and Sintering [in Russian], Izd. MISiS, Moscow (2002), 320 p.

  3. Randall M. German, A – Z of Powder Metallurgy [Russian translation], Izd. Dom “Intellekt,” Moscow (2009), 336 p.

  4. S. S. Kiparisov, Powder Metallurgy [in Russian], Metallurgiya, Moscow (1980), 496 p.

    Google Scholar 

  5. M. I. Alymov, Powder Metallurgy of Nanocrystalline Materials [in Russia], Nauka, Moscow (2007), 169 p.

    Google Scholar 

  6. I. D. Radomysel’skii, “Metal ceramic structures and parts,” in: I. M. Fedorchenko (ed.), Recent Problems of Powder Metallurgy [in Russian], Naukova Dumka, Kiev (1970), 343 p.

    Google Scholar 

  7. V. N. Kokorin, A. I. Rudskoy, S. Yu. Kondrat’ev, et al., Theory and Practice of Pressing of Heterophase Moistened Mechanical Mixtures Based on Iron [in Russian], Izd. UlGTU, Ul’yanovsk (2012), 236 p.

  8. A. I. Rudskoy, S. Yu. Kondrat’ev, and V. N. Kokorin, “Pressing of heterophase moistened powder metallic mixtures for raising the quality of high-density preforms using intense compaction,” Sprav. Inzh. Zhurn. s Prilozh., No. 6, 12 – 16 (2011).

  9. A. I. Rudskoy, V. N. Kokorin, S. Yu. Kondrat’ev, et al., “Pressing of heterophase moistened iron powders using the method of intense compaction,” Naukoemk. Tekhnol. Mashinostr., No. 5(23), 13 – 20 (2013).

  10. A. I. Rudskoy, S. Yu. Kondrat’ev, V. N. Kokorin, and N. A. Sizov, “Astudy of the process of compaction under ultrasonic impact on a moistened powder medium,” Nauch.-Tekh. Vedom. SPbGPU, No. 178, 148 – 155 (2013).

  11. V. E. Perel’man, Forming of Powder Materials [in Russian], Metallurgiya, Moscow (1978), 232 p.

    Google Scholar 

  12. S. Y. Kondrat’ev, V. I. Gorynin, and V. O. Popov, “Optimization of the parameters of surface-hardened layer in laser quenching of components,” Welding Int., 26(8), 629 – 632 (2012).

    Article  Google Scholar 

  13. S. Yu. Kondrat’ev, V. I. Gorynin, and V. O. Popov, “Optimization of the parameters of surface-hardened layer in laser quenching of parts,” Svaroch. Proizvod., No. 3, 11 – 15 (2011).

  14. J. Karlsson, A. Snis, H. Engqvist, and J. Lausmaa, “Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti – 6Al – 4V powder fractions,” J. Mater. Proc. Technol., 213, 2109 – 2118 (2013).

    Article  Google Scholar 

  15. X. Y. Cheng, S. J. Li, L. E. Murr, et al., “Compression deformation behavior of Ti – 6Al – 4V alloy with cellular structures fabricated by electron beam melting,” J. Mechan. Behavior Biomed. Mater., 16, 153 – 162 (2012).

    Article  Google Scholar 

  16. N. Hrabe and T. Quinn, “Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti – 6Al – 4V) fabricated using electron beam melting (EBM), Part 1: Distance from build plate and part size,” Mater. Sci. Eng. A, 573, 264 – 270 (2013).

    Article  Google Scholar 

  17. L. E. Murr, S.M. Gaytan, A. Cevlan, et al., “Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting,” Acta Mater., 58, 1887 – 1894 (2010).

    Article  Google Scholar 

  18. S. Biamino, A. U. Penna, U. Ackelid, et al., “Electron beam melting of Ti48Al12Cr2Nb alloy: Microstructure and mechanical properties investigation,” Intermetallics, 19, 776 – 781 (2011).

    Article  Google Scholar 

  19. Yu. P. Moskvichev, V. I. Panin, S. V. Ageev, et al., “Granule composites and efficiency of their application,” Actual Conf., No. 1, 46 – 50 (2011).

  20. A. I. Rudskoy, S. Yu. Kondrat’ev, and Yu. A. Sokolov, “Process of layer-after-layer electron beam synthesis of powder articles in vacuum,” Zagotov. Proizvod. Mashinostr., No. 8, 40 – 45 (2014).

  21. I. V. Zuev, Treatment of Materials by Lumped Energy Fluxes [in Russian], Izd. MEI, Moscow (1998), 162 p.

  22. N. I. Grechanyk, P. P. Kucherenko, and I. N. Grechanyk, “New electron beam equipment and technologies of producing advanced materials and coatings,” Paton Welding J., May, 25 – 29 (2007).

  23. A. I. Rudskoy, Yu. A. Sokolov, and V. N. Kopaev, “Determination of the thermophysical properties of materials for simulating the process of fabrication of metallic granules,” Nauch.-Tekh. Vedom. SPbGPU, No. 3(202), 170 – 179 (2014).

  24. V. T. Musienko, “Laws of formation of granules under centrifugal spraying of a rotating billet,” in: Granule Metallurgy [in Russian], VILS, Moscow (1983), Issue 1, pp. 41 – 48.

  25. V. T. Musienko, “Special features of spraying of a rotating billet,” in: Granule Metallurgy [in Russian], VILS, Moscow (1986), Issue 3, pp. 23 – 33.

  26. G. I. Éskin, “Conditions of formation of nondendritic structure in ingots and granules of light and refractory nickel alloys,” Tekhnol. Legk. Splavov, No. 4, 147 – 159 (2013).

  27. D. I. Sukhov, “Application of mathematical model for analyzing the effect of parameters of plasma spraying on the coarseness of granules of titanium alloy VT25UP,” Tekhnol. Legk. Splavov, No. 2, 57 – 68 (2013).

  28. V. K. Orlov, “Engineering computation of the aerodynamics of a particle under centrifugal spraying of melt,” in: Granule Metallurgy [in Russian], VILS, Moscow (1984), Issue 2, pp. 33 – 40.

  29. V. K. Orlov, “Computation of the rates of cooling of drops of sprayed metal in a gas environment,” in: Granule Metallurgy [in Russian], VILS, Moscow (1983), Issue 1, pp. 67 – 77.

  30. I. V. Blinkov and A. V. Manukhin, Nanodisperse and Granulated Materials Obtained in Pulse Plasma [in Russian], Izd. MISiS, Moscow (2005), 367 p.

  31. B. N. Guzanov, N. V. Obabkov, N. G. Belyankina, et al., “Ni – Cr – Al composition for plasma surfacing,” Zhashshit. Pokr. Met. (Kiev), No. 21, 38 – 41 (1987).

  32. A. Hasui and O. Morigaki, Surfacing and Spraying [Russian translation], Mashinostroenie, Moscow (1985), 345 p.

    Google Scholar 

  33. J.W. Bradley, H. Baeker, P. J. Kelly, and R. D. Arnell, “Time resolved Langmuir probe measurements in pulsed DC magnetron plasmas,” in: Poster Presentation at 7th Int. Conf. on Plasma Surface Engineering, PSE’00, Garmisch, Sept. 17 – 21 (2000).

  34. N. I. Grechanyk, V. A. Osokin, I. N. Grechanyk, and R. V. Vinakova, “Composite materials on base of copper and molybdenum, condensed from vapor phase, for electric contacts. Structure, properties, technology. Part 1. State-of-the-art and prospects of application of technology of electron beam high-rate evaporation-condensation for producing materials of electric contacts,” Adv. Electrometallurgy, No. 2, 24 – 29 (2005).

  35. B. A. Movchan, I. S. Malashenko, V. I. Nikitin, et al., “Effect of Co – Cr – Al – Y coatings on the physicomechanical properties of alloy EI-893 of turbine rotor blades of GT-100 plant,” Prob. Spets. Électrometall., No. 1, 34 – 41 (1985).

  36. N. I. Grechanuyk, P. P. Kucherenko, and R. V. Minakova, “Tendencies of development of processes of electron beam melting and high-temperature evaporation of metals and nonmetals in vacuum,” Tekh. Mashinostr., No. 2, 7 – 12 (2006).

  37. A. I. Rudskoy, Yu. A. Sokolov, and V. N. Kopaev, “Mathematical model of controlled heating of substrates of rectangular shape in production of powder materials,” Nauch.-Tekh. Vedom. SPbGPU, No. 2(195), 85 – 92 (2014).

  38. A. I. Rudskoy, Yu. A. Sokolov, and V. N. Kopaev, “Determination of the temperature field in scanning of a surface with electron beam in synthesis of powder articles,” Nauch.-Tekh. Vedom. SPbGPU, No. 2(195), 109 – 116 (2014).

  39. A. I. Rudskoy, Yu. A. Sokolov, and V. N. Kopaev, “Simulation of the process of electron-beam synthesis of articles from powder titanium alloy VT-6 with allowance for the heat of the phase transformation (Stefan two-phase problem),” Nauch.-Tekh. Vedom. SPbGPU, No. 3(202), 146 – 153 (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Rudskoy.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1, pp. 30 – 35, January, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudskoy, A.I., Kondrat’ev, S.Y. & Sokolov, Y.A. New Approach to Synthesis of Powder and Composite Materials by Electron Beam. Part 1. Technological Features of the Process. Met Sci Heat Treat 58, 27–32 (2016). https://doi.org/10.1007/s11041-016-9959-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-016-9959-x

Key words

Navigation