Skip to main content
Log in

Some Non-periodic p-Adic Generalized Gibbs Measures for the Ising Model on a Cayley Tree of Order k

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

In the present paper, we consider a p-adic Ising model on a Cayley tree. The existence of non-periodic p-adic generalized Gibbs measures of this model is investigated. In particular, we construct p-adic analogue of the Bleher–Ganikhodjaev construction and generalize some constructive methods. Moreover, the boundedness of obtained measures are established, which yields the occurrence of a phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Akin, H., Rozikov, U.A., Temir, S.: A new set of limiting Gibbs measures for the Ising model on a Cayley tree. J. Stat. Phys. 142, 314–321 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Areféva, IYa., Dragovic, B., Frampton, P.H., Volovich, I.V.: The wave function of the universe and \(p\)-adic gravity. Int. J. Mod. Phys. A 6, 4341–4358 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Avetisov, V.A., Bikulov, A.H., Kozyrev, S.V.: Application of \(p\)-adic analysis to models of spontaneous breaking of the replica symmetry. J. Phys. A 32, 8785–8791 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bleher, P.M., Ganikhodjaev, N.N.: On pure phases of the Ising model on the Bethe lattice. Theor. Probab. Appl. 35, 216–227 (1990)

    Article  MathSciNet  Google Scholar 

  5. Dobrushin, R.L.: Gibbs state describing coexistence of phases for a three-dimensional Ising model. Theor. Probab. Appl. 17, 619–639 (1972)

    MATH  Google Scholar 

  6. Fan, A.H., Liao, L.M., Wang, Y.F., Zhou, D.: \(p\)-Adic repellers in \(Q_p\) are subshifts of finite type. C. R. Math. Acad. Sci. Paris 344, 219–224 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ganikhodjayev, N.N., Mukhamedov, F.M., Rozikov, U.A.: Existence of phase transition for the Potts \(p\)-adic model on the set \({\mathbb{Z} }\). Theor. Math. Phys. 130(3), 425–431 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Georgii, H.-O.: Gibbs Measures and Phase Transitions. W. de Gruyter, Berlin (1988). https://doi.org/10.1515/9783110250329

    Book  MATH  Google Scholar 

  9. Harris, J.M., Hirst, J.L., Mossinghoff, M.J.: Combinatorics and Graph Theory. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  10. Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Z. Phys. (1925). https://doi.org/10.1007/BF02980577

    Article  MATH  Google Scholar 

  11. Katsura, S., Takizawa, M.: Bethe lattice and the Bethe approximation. Prog. Theor. Phys. (1974). https://doi.org/10.1143/PTP.51.82

    Article  Google Scholar 

  12. Khakimov, O.N.: On a generalized \(p\)-adic Gibbs measure for Ising model on trees. \(p\)-Adic Numbers Ultrametric Anal. Appl. 6(3), 207–217 (2014)

  13. Khamraev, M., Mukhamedov, F., Rozikov, U.: On uniqueness of Gibbs measure for \(p\)-adic \(\lambda \)-model on the Cayley tree. Lett. Math. Phys. 70, 17–28 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Khrennikov, AYu.: Generalized probabilities taking values in non-Archimedean fields and in topological groups. Russ. J. Math. Phys. 14, 142–159 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khrennikov, AYu.: \(p\)-Adic quantum mechanics with \(p\)-adic valued functions. J. Math. Phys. 32, 932–936 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Khrennikov, AYu.: \(p\)-Adic valued distributions in mathematical physics. Kluwer, Dordrecht (1994)

    Book  MATH  Google Scholar 

  17. Khrennikov, AYu., Kozyrev, S.V.: Replica symmetry breaking related to a general ultrametric space I: replica matrices and functionals. Physica A 359, 222–240 (2006)

    Article  ADS  Google Scholar 

  18. Khrennikov, AYu., Kozyrev, S.V.: Replica symmetry breaking related to a general ultrametric space II: RSB solutions and the \(n\rightarrow 0\) limit. Physica A 359, 241–266 (2006)

    Article  ADS  Google Scholar 

  19. Khrennikov, AYu., Kozyrev, S.V.: Replica symmetry breaking related to a general ultrametric space III: the case of general measure. Physica A 378(2), 283–298 (2007)

    Article  ADS  Google Scholar 

  20. Khrennikov, AYu., Kozyrev, S.V., Zuniga-Galindo, W.A.: Ultrametric Pseudodifferential Equations and Applications. Cambridge University Press, Cambridge (2018)

    Book  MATH  Google Scholar 

  21. Khrennikov, AYu., Ludkovsky, S.: Stochastic processes on non-Archimedean spaces with values in non-Archimedean fields. Markov Process. Relat. Fields 9, 131–162 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Koblitz, N.: \(p\)-Adic Numbers, \(p\)-Adic Analysis, and Zeta-Functions. Springer, Berlin (1977)

    MATH  Google Scholar 

  23. Kuelske, C., Rozikov, U.A.: Fuzzy transformations and extremality of Gibbs measures for the Potts model on a Cayley tree. Random Struct. Algorithms 50(4), 636–678 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Marinari, E., Parisi, G.: On the \(p\)-adic five-point function. Phys. Lett. B 203(1–2), 52–54 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  25. Mukhamedov, F., Akin, H., Dogan, M.: On chaotic behavior of the \(p\)-adic generalized Ising mapping and its application. J. Differ. Equ. Appl. 23(9), 1542–1561 (2017)

    MATH  Google Scholar 

  26. Mukhamedov, F., Khakimov, O.: On Julia set and chaos in \(p\)-adic Ising model on the Cayley tree. Math. Phys. Anal. Geom. (2017). https://doi.org/10.1007/s11040-017-9254-0

  27. Mukhamedov, F., Khakimov, O.: Translation-invariant generalized \(p\)-adic Gibbs measures for the Ising model on Cayley trees. Math. Methods Appl. Sci. 44(16), 12302–12316 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Mukhamedov, F.: On dynamical systems and phase transitions for \(q+1\)-state \(p\)-adic Potts model on the Cayley tree. Math. Phys. Anal. Geom. 16, 49–87 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mukhamedov, F.M., Rozikov, U.A.: On Gibbs measures of \(p\)-adic Potts model on the Cayley tree. Indag. Math. 15(1), 85–100 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mukhamedov, F., Saburov, M., Khakimov, O.: On \(p\)-adic Ising-Vannimenus model on an arbitrary order Cayley tree. J. Stat. Mech. (2015). https://doi.org/10.1088/1742-5468/2015/05/P05032

  31. Onsager, L.: Crystal statistics. I. A two-dimensional model with an order–disorder transition. Phys. Rev. Ser. II (1944). https://doi.org/10.1103/PhysRev.65.117

    Article  MathSciNet  MATH  Google Scholar 

  32. Parisi, G.: On \(p\)-adic functional integrals. Mod. Phys. Lett. A 3(06), 639–643 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  33. Parisi, G., Ricci-Tersenghi, F.: On the origin of ultrametricity. J. Phys. A (2000). https://doi.org/10.1088/0305-4470/33/1/307

  34. Parisi, G., Sourlas, N.: \(p\)-Adic numbers and replica symmetry breaking. Eur. Phys. J. B 14, 535–542 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  35. Peierls, R.: On Ising’s model of ferromagnetism. Math. Proc. Camb. Philos. Soc. (1936). https://doi.org/10.1017/S0305004100019174

    Article  MATH  Google Scholar 

  36. Preston, C.J.: Gibbs States on Countable Sets. Cambridge University Press, London (1974). https://doi.org/10.1017/CBO9780511897122

    Book  MATH  Google Scholar 

  37. Rahmatullaev, M.M.: Ising model on trees: \((k_0)-\) translation-invariant Gibbs measures. J. Phys.: Conf. Ser. (2017). https://doi.org/10.1088/1742-6596/819/1/012019

    Article  MathSciNet  Google Scholar 

  38. Rahmatullaev, M.M., Khakimov, O.N., Tukhtaboev, A.M.: A \(p\)-adic generalized Gibbs measure for the Ising model on a Cayley tree. Theor. Math. Phys. 201(1), 1521–1530 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rahmatullaev, M.M.: \((k_0)\)-periodic Gibbs measures of the Ising model on a Cayley tree. Dokl. Akad. Nauk. Uzb. 3, 9–12 (2016)

    Google Scholar 

  40. Rahmatullaev, M.M., Tukhtabaev, A.M.: Non periodic \(p\)-adic generalized Gibbs measure for the Ising model. \(p\)-Adic Numbers Ultrametric Anal. Appl. 11, 319–327 (2019)

  41. Rahmatullaev, M.M., Tukhtabaev, A.M.: On periodic \(p\)-adic generalized Gibbs measures for Ising model on a Cayley tree. Lett. Math. Phys. (2022). https://doi.org/10.1007/s11005-022-01598-z

    Article  MathSciNet  MATH  Google Scholar 

  42. Rozikov, U.A.: Gibbs Measures in Biology and Physics: The Potts Model. World Scientific Publishing, Singapore (2023)

    MATH  Google Scholar 

  43. Rozikov, U.A.: Gibbs Measures on Cayley Trees. World Scientific Publishing, Singapore (2013)

    Book  MATH  Google Scholar 

  44. Rozikov, U.A., Rahmatullaev, M.M.: Ising model on Cayley trees: a new class of Gibbs measures and their comparison with known ones. J. Stat. Mech. (2017). https://doi.org/10.1088/1742-5468/aa85c2

    Article  MATH  Google Scholar 

  45. Rozikov, U.A.: What are the \(p\)-adic numbers? What are they used for? Asia Pac. Math. Newslett. 3(4), 1–5 (2013)

    MathSciNet  Google Scholar 

  46. Schikhof, W.H.: Ultrametric Calculus. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  47. Thiran, E., Verstegen, D., Weters, J.: \(p\)-Adic dynamics. J. Stat. Phys. 54, 893–913 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Tukhtabaev, A.M.: On \(G_2\)-periodic quasi Gibbs measures of \(p\)-adic Potts model on a Cayley tree. \(p\)-Adic Numbers Ultrametric Anal. Appl. 13, 291–307 (2021)

  49. Vladimirov, V.S., Volovich, I.V., Zelenov, E.V.: \(p\)-Adic Analysis and Mathematical Physics. World Scientific Publishing, Singapore (1994)

    Book  MATH  Google Scholar 

  50. Woodcock, C.F., Smart, N.P.: \(p\)-Adic chaos and random number generation. Exp. Math. 7, 333–342 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zuniga-Galindo, W.A., Torba, S.M.: Non-Archimedean Coulomb gases. J. Math. Phys. 61, 013504 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the many helpful suggestions of Prof. Utkir A. Rozikov during the preparation of the paper. We also thank the referees for the careful reading of the manuscript and especially for a number of suggestions that have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbarkhuja Tukhtabaev.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmatullaev, M., Tukhtabaev, A. Some Non-periodic p-Adic Generalized Gibbs Measures for the Ising Model on a Cayley Tree of Order k. Math Phys Anal Geom 26, 22 (2023). https://doi.org/10.1007/s11040-023-09465-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-023-09465-6

Keywords

Mathematics Subject Classification

Navigation