Skip to main content
Log in

Discrete Field Theory: Symmetries and Conservation Laws

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We present a general algorithm constructing a discretization of a classical field theory from a Lagrangian. We prove a new discrete Noether theorem relating symmetries to conservation laws and an energy conservation theorem not based on any symmetry. This gives exact conservation laws for several theories, e.g., lattice electrodynamics and gauge theory. In particular, we construct a conserved discrete energy–momentum tensor, approximating the continuum one at least for free fields. The theory is stated in topological terms, such as coboundary and products of cochains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Am. Math. Soc. (N.S.) 47, 281–354 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bender, C., Mead, L., Milton, K.: Discrete time quantum mechanics. Comput. Math. Appl. 28(10–12), 279–317 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Berbatov, K., Boom, P.D., Hazel, A.L., Jivkov, A.P.: Diffusion in multi-dimensional solids using Forman’s combinatorial differential forms. Appl. Math. Model. 110, 172–192 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bobenko, A.I., Skopenkov, M.B.: Discrete Riemann surfaces: linear discretization and its convergence. J. Reine Angew. Math. 2016(720), 217–250 (2016). arXiv:1210.0561

    Article  MathSciNet  MATH  Google Scholar 

  5. Bossavit, A.: Extrusion, contraction: their discretization via Whitney forms. Int. J. Comput. Maths Electr. Electron. Eng. 22(3), 470–480 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chelkak, D., Smirnov, S.: Discrete complex analysis on isoradial graphs. Adv. Math. 228, 1590–1630 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chelkak, D., Glazman, A., Smirnov, S.: Discrete stress-energy tensor in the loop O(n) model. arXiv:1604.06339

  8. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  9. Connes, A., Marcoli, M.: Noncommutative geometry, quantum fields and motives. Am. Math. Soc. 785pp

  10. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100, 32–74 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  11. Creutz, M.: Quarks, Gluons and Lattices. Cambridge University Press, Cambridge (1983)

    Google Scholar 

  12. Dimakis, A., Müller-Hoissen, F.: Discrete differential calculus, graphs, topologies and gauge theory. J. Math. Phys. 35, 6703–35 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Dorodnitsyn, V.A.: Group Properties of Difference Equations, p. 240. Fizmatlit, Moscow (2001)

    Google Scholar 

  14. Forman, R.: Combinatorial Novikov–Morse theory. Int. J. Math. 13(04), 333–368 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gawlik, E.S., Mullen, P., Pavlov, D., Marsden, J.E., Desbrun, M.: Geometric, variational discretization of continuum theories. Physica D 240(21), 1724–1760 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Grinspun, E., Desbrun, M., Polthier, K., Schröder, P., Stern, A.: Discrete differential geometry: an applied introduction. SIGGRAPH 2006 course notes (2006)

  17. Gross, P.W., Kotiuga, P.R.: Electromagnetic Theory and Computation: A Topological Approach. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  18. Hydon, P., Mansfield, E.: A variational complex for difference equations. J. Found. Comput. Math. 4(2), 187–217 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kraus, M., Maj, O.: Variational integrators for nonvariational partial differential equations. Physica D 310, 37–71 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Kron, G.: Equivalent circuit of the field equations of Maxwell-I. Proc. I.R.E. 32(5), 289–299 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lusternik, L.: Über einige Anwendungen der direkten Methoden in Variationsrechnung. Sb. Math+ 33(2), 173–202 (1926)

    MATH  Google Scholar 

  22. Maldacena, J.: The symmetry and simplicity of the laws of physics and the Higgs boson. Eur. J. Phys. 37, 1 (2016)

    Article  MATH  Google Scholar 

  23. Mansfield, E., Pryer, T.: Noether-type discrete conserved quantities arising from a finite element approximation of a variational problem. J. Found. Comput. Math. 17(3), 729–762 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Marsden, J.E., Patrick, G.W., Shkoller, S.: Multisymplectic geometry, variational integrators, and nonlinear PDEs. Commun. Math. Phys. 199(2), 351–395 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Skopenkov, M.: Discrete field theory: symmetries and conservation laws. (2023). arXiv:1709.04788v4

  26. Skopenkov, M., Ustinov, A.: Feynman checkers: towards algorithmic quantum theory. Russ. Math. Surv. 3(465), 73–160 (2022)

    MathSciNet  MATH  Google Scholar 

  27. Suzuki, H.: Energy-momentum tensor on the lattice: recent developments, Proc. 34th International Symposium on Lattice Field Theory (2016). University of Southampton, UK. arXiv:1612.00210

  28. Teixeira, F.L.: Differential forms in lattice field theories: an overview. ISRN Math. Phys. 16pp (2013)

  29. Tonti, E.: The Mathematical Structure of Classical and Relativistic Physics: A General Classification Diagram. Springer, New York (2013)

    Book  MATH  Google Scholar 

  30. Werness, B.M.: Discrete analytic functions on non-uniform lattices without global geometric control. arXiv:1511.01209

  31. Whitney, H.: On Products in a Complex. Ann. Math. (Second Series) 39(2), 397–432 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  32. Whitney, H.: Geometric Integration Theory. Princeton Univ. Press, Princeton (1957)

    Book  MATH  Google Scholar 

  33. Wilson, S.O.: Conformal cochains. Trans. Am. Math. Soc. 360, 5247–5264 (2008). (Addendum: Trans. Amer. Math. Soc. 365 (2013), 5033–5033)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to E. Akhmedov, L. Alania, D. Arnold, A. Bossavit, V. Buchstaber, D. Chelkak, M. Chernodub, M. Desbrun, M. Gualtieri, F. Günther, I. Ivanov, A. Jivkov, M. Kraus, N. Mnev, F. Müller-Hoissen, S. Pirogov, P. Pylyavskyy, A. Rassadin, R. Rogalyov, I. Sabitov, P. Schröder, I. Shenderovich, B. Springborn, A. Stern, S. Tikhomirov, S. Vergeles for useful discussions.

Funding

The publication was prepared within the framework of the Academic Fund Program at the National Research University Higher School of Economics (HSE) in 2018–2019 (grant N18-01-0023) and by the Russian Academic Excellence Project “5-100”. The author has also received support from the Simons–IUM fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Skopenkov.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Alexander I. Bobenko.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skopenkov, M. Discrete Field Theory: Symmetries and Conservation Laws. Math Phys Anal Geom 26, 19 (2023). https://doi.org/10.1007/s11040-023-09459-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-023-09459-4

Keywords

Mathematics Subject Classification

Navigation