Skip to main content

Advertisement

Log in

CSO-CNN: Cat Swarm Optimization-guided Convolutional Neural Network for Mobile Detection of Breast Cancer

  • Research
  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Breast cancer has become the most common cancer in the world. Early diagnosis and treatment can greatly improve the survival rate of breast cancer patients. Computer diagnostic technology based on convolutional neural networks (CNNs) can assist in detecting breast cancer based on medical images, effectively improving detection accuracy. Hyperparameters in CNN will affect model performance, so hyperparameter tuning is necessary for model training. However, traditional tuning methods can get stuck in local minimums. Therefore, the weights and biases of artificial neural networks are usually trained using global optimization algorithms. Our research introduces cat swarm optimization (CSO) to construct a cat swarm optimization-guided convolutional neural network (CSO-CNN). The model can quickly obtain the optimal combination of hyperparameters and stably get closer to the global optimal. The statistical results of CSO-CNN obtained a sensitivity of 93.50% ± 2.42%, a specificity of 92.20% ± 3.29%, a precision of 92.35% ± 3.01%, an accuracy of 92.85% ± 2.49%, an F1-score of 92.91% ± 2.44%, Matthews correlation coefficient of 85.74% ± 4.94%, and Fowlkes-Mallows index was 92.92% ± 2.43%. Our CSO-CNN algorithm is superior to five state-of-the-art methods. In addition, we tested the CSO-CNN algorithm on the local computer to simulate the mobile environment and confirmed that the algorithm can be transplanted to the network servers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data available on reasonable request to corresponding authors.

References

  1. Viswanathan S, Parida S, Lingipilli BT, Krishnan R, Podipireddy DR et al (2023) Role of Gut Microbiota in Breast Cancer and Drug Resistance. Pathogens 12(3):468. https://doi.org/10.3390/pathogens12030468

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  Google Scholar 

  3. Rahman WT, Gerard S, Grundlehner P, Oudsema R, McLaughlin C et al (2023) Outcomes of high-risk breast MRI screening in women without prior history of breast cancer: Effectiveness data from a tertiary care center. J Breast Imaging 6(1):53–63. https://doi.org/10.1093/jbi/wbad092

    Article  Google Scholar 

  4. Feng R-Q, Li D-H, Liu X-K, Zhao X-H, Wen Q-E et al. (2023) Traditional chinese medicine for breast cancer: a review. Breast cancer: targets therapy 15:747–759. https://doi.org/10.2147/BCTT.S429530

  5. Diessner J, Anders L, Herbert S, Kiesel M, Bley T et al (2023) Evaluation of different imaging modalities for axillary lymph node staging in breast cancer patients to provide a personalized and optimized therapy algorithm. J Cancer Res Clin Oncol 149(7):3457–3467. https://doi.org/10.1007/s00432-022-04221-9

    Article  PubMed  Google Scholar 

  6. Shareef M, Ashraf MA, Sarfraz M (2016) Natural cures for breast cancer treatment. Saudi Pharmaceut J 24(3):233–240. https://doi.org/10.1016/j.jsps.2016.04.018

    Article  Google Scholar 

  7. Xu H, Xu B (2023) Breast cancer: Epidemiology, risk factors and screening. Chin J Cancer Res 35(6):565–583. https://doi.org/10.21147/j.issn.1000-9604.2023.06.02

    Article  PubMed  PubMed Central  Google Scholar 

  8. Debelee TG, Schwenker F, Ibenthal A, Yohannes D (2020) Survey of deep learning in breast cancer image analysis. Evol Syst 11:143–163. https://doi.org/10.1007/s12530-019-09297-2

    Article  Google Scholar 

  9. Sun L, Wang J, Hu Z, Xu Y, Cui Z (2019) Multi-view convolutional neural networks for mammographic image classification. IEEE Access 7:126273–126282. https://doi.org/10.1109/ACCESS.2019.2939167

    Article  Google Scholar 

  10. Hoff SR, Abrahamsen A-L, Samset JH, Vigeland E, Klepp O et al (2012) Breast cancer: missed interval and screening-detected cancer at full-field digital mammography and screen-film mammography—results from a retrospective review. Radiology 264(2):378–386. https://doi.org/10.1148/radiol.12112074

    Article  PubMed  Google Scholar 

  11. Friedewald SM, Rafferty EA, Rose SL, Durand MA, Plecha DM et al (2014) Breast cancer screening using tomosynthesis in combination with digital mammography. JAMA 311(24):2499–2507. https://doi.org/10.1001/jama.2014.6095

    Article  CAS  PubMed  Google Scholar 

  12. Gordon PB (2002) Ultrasound for breast cancer screening and staging. Radiologic Clinics 40(3):431–441. https://doi.org/10.1016/S0033-8389(01)00014-8

    Article  PubMed  Google Scholar 

  13. Houssami N, Hayes DF (2009) Review of preoperative magnetic resonance imaging (MRI) in breast cancer: should MRI be performed on all women with newly diagnosed, early stage breast cancer? CA: A Cancer J Clin 59(5):290–302. https://doi.org/10.3322/caac.20028

    Article  Google Scholar 

  14. Skaane P (2017) Breast cancer screening with digital breast tomosynthesis. Breast cancer 24:32–41. https://doi.org/10.1007/s12282-016-0699-y

  15. Tan YJ, Sim KS, Ting FF (2017) Breast cancer detection using convolutional neural networks for mammogram imaging system. In 2017 International conference on robotics, automation and sciences (ICORAS). Melaka, Malaysia IEEE. 1–5. https://doi.org/10.1109/ICORAS.2017.8308076

  16. Raaj RS (2023) Breast cancer detection and diagnosis using hybrid deep learning architecture. Biomed Signal Process Control 82:104558. https://doi.org/10.1016/j.bspc.2022.104558

    Article  Google Scholar 

  17. Melekoodappattu JG, Dhas AS, Kandathil BK, Adarsh KS (2023) Breast cancer detection in mammogram: combining modified CNN and texture feature based approach. J Ambient Intell Humaniz Comput 14(9):11397–11406. https://doi.org/10.1007/s12652-022-03713-3

    Article  Google Scholar 

  18. Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324. https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  19. Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507. https://doi.org/10.1126/science.1127647

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  20. Gu J, Wang Z, Kuen J, Ma L, Shahroudy A et al (2018) Recent advances in convolutional neural networks. Pattern Recogn 77:354–377

    Article  ADS  Google Scholar 

  21. Mirjalili S (2019) Genetic algorithm. In evolutionary algorithms and neural networks. Springer, Cham, Switzerland 780:43–55. https://doi.org/10.1007/978-3-319-93025-1_4

  22. Pereira DC, Ramos RP, Do Nascimento MZ (2014) Segmentation and detection of breast cancer in mammograms combining wavelet analysis and genetic algorithm. Comput Methods Programs Biomed 114(1):88–101. https://doi.org/10.1016/j.cmpb.2014.01.014

    Article  PubMed  Google Scholar 

  23. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In MHS'95. Proceedings of the sixth international symposium on micro machine and human science. Nagoya, Japan IEEE. 39–43. https://doi.org/10.1109/MHS.1995.494215

  24. Sakri SB, Rashid NBA, Zain ZM (2018) Particle swarm optimization feature selection for breast cancer recurrence prediction. IEEE Access 6:29637–29647. https://doi.org/10.1109/ACCESS.2018.2843443

    Article  Google Scholar 

  25. Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66. https://doi.org/10.1109/4235.585892

    Article  Google Scholar 

  26. Fallahzadeh O, Dehghani-Bidgoli Z, Assarian M (2018) Raman spectral feature selection using ant colony optimization for breast cancer diagnosis. Lasers Med Sci 33(8):1799–1806. https://doi.org/10.1007/s10103-018-2544-3

    Article  PubMed  Google Scholar 

  27. Chu S-C, Tsai P-W, Pan J-S (2006) Cat swarm optimization. In PRICAI 2006: Trends in Artificial Intelligence: 9th Pacific Rim International Conference on Artificial Intelligence Guilin, China, August 7-11, 2006 Proceedings 9. Guilin, China Springer. 854–858. https://doi.org/10.1007/978-3-540-36668-3_94

  28. Wang SH, Lv YD (2018) Alcoholism detection by data augmentation and convolutional neural network with stochastic pooling. J Med Syst 42(2):1–11. https://doi.org/10.1007/s10916-017-0845-x

  29. Kumar P, Hati AS (2021) Transfer learning-based deep CNN model for multiple faults detection in SCIM. Neural Comput Appl 33(22):15851–15862. https://doi.org/10.1007/s00521-021-06205-1

    Article  Google Scholar 

  30. Wang S-H (2018) Polarimetric synthetic aperture radar image segmentation by convolutional neural network using graphical processing units. J Real-Time Image Proc 15(3):631–642. https://doi.org/10.1007/s11554-017-0717-0

    Article  Google Scholar 

  31. Desai M, Shah M (2021) An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and Convolutional neural network (CNN). Clinical eHealth 4:1–11. https://doi.org/10.1016/j.ceh.2020.11.002

    Article  Google Scholar 

  32. Davoudi K, Thulasiraman P (2021) Evolving convolutional neural network parameters through the genetic algorithm for the breast cancer classification problem. SIMULATION 97(8):511–527. https://doi.org/10.1177/0037549721996031

    Article  PubMed  PubMed Central  Google Scholar 

  33. Harish H, Bharathi DS, Pratibha M, Holla D, Ashwini KB, Keerthana KR et al (2022) Particle swarm optimization for predicting breast cancer. In 2022 International conference on knowledge engineering and communication systems (ICKES). Chickballapur, India. 1–5. https://doi.org/10.1109/ICKECS56523.2022.10060690

  34. Lin R-H, Kujabi BK, Chuang C-L, Lin C-S, Chiu C-J (2022) Application of Deep Learning to Construct Breast Cancer Diagnosis Model. Appl Sci 12:1957. https://doi.org/10.3390/app12041957

    Article  CAS  Google Scholar 

  35. Saha SK, Ghoshal SP, Kar R, Mandal D (2013) Cat Swarm Optimization algorithm for optimal linear phase FIR filter design. ISA Trans 52(6):781–794. https://doi.org/10.1016/j.isatra.2013.07.009

    Article  PubMed  Google Scholar 

  36. Yan D, Cao H, Yu Y, Wang Y, Yu X (2020) Single-objective/multiobjective cat swarm optimization clustering analysis for data partition. IEEE Trans Autom Sci Eng 17(3):1633–1646. https://doi.org/10.1109/TASE.2020.2969485

    Article  Google Scholar 

  37. Du Y, Wang JL, Lei L (2019) Multi-objective scheduling of cloud manufacturing resources through the integration of cat swarm optimization and firefly algorithm. Production Engineering Institute (PEI). Fac Mech Eng 14(3):333–342. https://doi.org/10.14743/APEM2019.3.331

    Article  Google Scholar 

  38. Mangalampalli S, Swain SK, Mangalampalli VK (2022) Multi objective task scheduling in cloud computing using cat swarm optimization algorithm. Arab J Sci Eng 47(2):1821–1830. https://doi.org/10.1007/s13369-021-06076-7

    Article  Google Scholar 

  39. Zhang Y-D (2018) Cat Swarm Optimization applied to alcohol use disorder identification. Multimed Tools Appl 77(17):22875–22896

    Article  Google Scholar 

  40. Wang S-H (2017) Facial emotion recognition via discrete wavelet transform, principal component analysis, and cat swarm optimization. In intelligence science and big data engineering. Springer International Publishing, Cham 10559:203–214. https://doi.org/10.1007/978-3-319-67777-4_18

  41. Ahmed AM, Rashid TA, Saeed SAM (2020) Cat swarm optimization algorithm: a survey and performance evaluation. Comput Intell Neurosci 2020:4854895. https://doi.org/10.1155/2020/4854895

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980

  43. Neunhoeffer M, Sternberg S (2018) How Cross-Validation Can Go Wrong and What to Do About It. Polit Anal 27(1):101–106. https://doi.org/10.1017/pan.2018.39

    Article  Google Scholar 

  44. Rao RB, Fung G, Rosales R (2008) On the dangers of cross-validation. An experimental evaluation. In: Proceedings of the 2008 SIAM international conference on data mining (SDM), society for industrial and applied mathematics, Atlanta 588–596. https://doi.org/10.1137/1.9781611972788.5

  45. Jiang P, Chen J (2016) Displacement prediction of landslide based on generalized regression neural networks with K-fold cross-validation. Neurocomputing 198(1):40–47. https://doi.org/10.1016/j.neucom.2015.08.118

    Article  Google Scholar 

  46. Wang W, Pei Y, Wang SH, Gorrz JM, Zhang YD (2023) PSTCNN: Explainable COVID-19 diagnosis using PSO-guided self-tuning CNN. Biocell 47(2):373–384. https://doi.org/10.32604/biocell.2021.0xxx

    Article  PubMed  Google Scholar 

  47. Balaji P, Muniasamy V, Bilfaqih SM, Muniasamy A, Tharanidharan S et al (2023) Chimp optimization algorithm Influenced Type-2 intuitionistic fuzzy C-Means clustering-based breast cancer detection system. Cancers 15(4):1131

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ding K, Xu Z, Tong H, Liu H (2022) Data augmentation for deep graph learning: A survey. Assoc Comput Mach Special Interes Group Knowl Disc Data Explor Newsletter 24(2):61–77. https://doi.org/10.1145/3575637.3575646

    Article  Google Scholar 

  49. Ding K, Xu Z, Tong H, Liu H (2022) Data augmentation for deep graph learning: A survey. ACM SIGKDD Explorations Newsl 24(2):61–77

    Article  Google Scholar 

  50. Nguyen E (2018) Breast cancer detection via Hu moment invariant and feedforward neural network. AIP conference proceedings 1954:030014. https://doi.org/10.1063/1.5033394

  51. Guo Z-W (2018) Breast cancer detection via wavelet energy and support vector machine. In 27th IEEE international conference on robot and human interactive communication (ROMAN). Nanjing, China IEEE. 758–763. https://doi.org/10.1109/ROMAN.2018.8525650

  52. Suresh A, Udendhran R, Balamurgan M (2020) Hybridized neural network and decision tree based classifier for prognostic decision making in breast cancers. Soft Comput 24(11):7947–7953. https://doi.org/10.1007/s00500-019-04066-4

    Article  Google Scholar 

  53. Khan MB, Saha PS, Shahrior R (2021) Feasible Detection of Breast Cancer Metastasis using a CNN-based Deep Learning Model. In International conference on electronics, communications and information technology (ICECIT). Khulna Univ, Elect & Commun Engn Discipline, ELECTR NETWORK IEEE. 1–4. https://doi.org/10.1109/icecit54077.2021.9641195

  54. Yun CH, Eom B, Park S, Kim C, Kim D et al (2023) A study on the effectiveness of deep learning-based anomaly detection methods for breast ultrasonography. Sensors 23(5):2864. https://doi.org/10.3390/s23052864

    Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This paper is partially supported by National Natural Science Foundation of China (62303167); the Nationally Funded Postdoctoral Researcher Program of China (GZC20230707); Major project of philosophy and social science research in colleges and universities in Jiangsu Province, China (2023SJZD125).

Author information

Authors and Affiliations

Authors

Contributions

Xiaoyan Jiang: Conceptualization, Methodology, Software, Formal analysis, Resources, Writing - Original Draft, Visualization. Zuojin Hu: Methodology, Validation, Formal analysis, Investigation, Writing - Review & Editing, Visualization, Project administration. ZhaoZhao Xu: Validation, Investigation, Data Curation, Writing - Review & Editing, Supervision, Project administration. All authors reviewed the manuscript

Corresponding author

Correspondence to Xiaoyan Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Hu, Z. & Xu, Z. CSO-CNN: Cat Swarm Optimization-guided Convolutional Neural Network for Mobile Detection of Breast Cancer. Mobile Netw Appl (2024). https://doi.org/10.1007/s11036-024-02298-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11036-024-02298-9

Keywords

Navigation