Skip to main content
Log in

Survey and Perspective on Extremely High Throughput (EHT) WLAN — IEEE 802.11be

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

The IEEE 802.11ax for Wireless Local Area Network (WLAN), one of the most important wireless networks, will be released in 2020. In recent years, ultra-high definition video service and real-time applications attract increasing attention. Therefore, the next generation WLAN (beyond IEEE 802.11ax): IEEE 802.11be task group (TGbe) was formally established in 2019, which regards achieving extremely high throughput (EHT) as its core technical objective. This article investigates and analyzes the key technologies of IEEE 802.11be, and further provides our perspectives and insights on it. Specifically, this article gives a brief overview on IEEE 802.11be, including the target scenario and technical objective, key technologies overview, and the standardization process. After that, we further investigate, analyze and provide perspectives on the key technologies of IEEE 802.11be including multi-band operation, multi-AP coordination, enhanced link reliability, and latency & jitter guarantee. To the best of our knowledge, this is the first work to investigate, analyze and provide insights on IEEE 802.11be.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ericsson (2019) The power of 5g is here and will continue to spread across the globe in the coming years. Ericsson Mobility Report

  2. Cisco (2019) Global mobile data traffic forecast update. Cisco Visual Networking Index: White Paper

  3. Yang M, Li B, Yan Z (2019) Mac technology of ieee 802.11ax: Progress and tutorial (acepted). Mobile Networks and Applications

  4. Qu Q, Li B, Yang M, Yan Z, Yang A, Deng D-J, Chen K-C (2019) Survey and performance evaluation of the upcoming next generation wlans standard - ieee 802.11ax. Mobile Networks and Applications

  5. Deng DJ, Lien SY, Lee J, Chen KC (2016) On quality-of-service provisioning in ieee 802.11ax wlans. IEEE Access 4:6086– 6104

    Article  Google Scholar 

  6. IEEE 802.11ax Task Group (2019) Ieee p802.11ax d4.3. Telecommunications and information exchange between systems local and metropolitan area networks—Specific requirements?, pp 1–746

  7. IEEE 802.11be Task Group (2019) Project authorization request. Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment: enhancements for extremely high throughput (EHT), pp 1–2

  8. Yang M, Li B, Yan Z, Yan Y (2019) Ap coordination and full-duplex enabled multi-band operation for the next generation wlan: Ieee 802.11be (eht). In: The 11th International Conference on Wireless Communications and Signal Processing, pp 1–7

  9. Qiao J, He Y, Shen XS (2018) Improving video streaming quality in 5g enabled vehicular networks. IEEE Wireless Commun 25(2):133–139

    Article  Google Scholar 

  10. Fan Q, Yin H, Min G, Yang P, Luo Y, Lyu Y, Huang H, Jiao L (2018) Video delivery networks: Challenges, solutions and future directions. Comput Electrical Engineering 66:332–341

    Article  Google Scholar 

  11. Zhao G, Imran MA, Pang Z, Chen Z, Li L (2019) Toward real-time control in future wireless networks: Communication-control co-design. IEEE Commun Mag 57(2):138–144

    Article  Google Scholar 

  12. Park E, Lim D, Kim J, Choi J (2019) Phase rotation for 320mhz. doc.: Ieee 802.11-19/1493r0. IEEE TGbe Proposal, pp 1–11

  13. Park E, Lim D, Kim J, Choi J (2019) Non-ofdma tone plan for 320mhz. doc.: Ieee 802.11-19/1492r0. IEEE TGbe Proposal, pp 1–12

  14. Chen A, Yang L, Tian B, Kim Y, Vermani S, Shellhammer S (2019) 320mhz channelization and tone plan. doc.: Ieee 802.11-19/0797r0.IEEE TGbe Proposal, pp 1–10

  15. Park E, Lim D, Kim J, Choi J (2019) Tone plan discussion. doc.: Ieee 802.11-19/1066r1. IEEE TGbe Proposal, pp 1–16

  16. Yu J, Gan M (2019) 11be tone plan. doc.: Ieee 802.11-19/1487r1. IEEE TGbe Proposal, pp 1–10

  17. Park E, Lim D, Kim J, Choi J (2019) Non-ofdma tone plan for 320mhz. doc.: Ieee 802.11-19/1492r1. IEEE TGbe Proposal, pp 1–12

  18. Son J, Ko G, Kwak JS, Kim S, Murti W, Yun JH, Oh YS (2019) Preamble puncturing and sig-b signaling. doc.: Ieee 802.11-19/1606r0. IEEE TGbe Proposal, pp 1–14

  19. Redlich O, Shilo S, Hencinski O, Klausner O, Yu J, Xin J (2019) Improved preamble puncturing in 802.11be. doc.: Ieee 802.11-19/1190r2. IEEE TGbe Proposal, pp 1–11

  20. Tian B, Yang L, Kim Y (2019) Preamble puncturing and ru aggregation. doc.: Ieee 802.11-19/1869r2. IEEE TGbe Proposal, pp 1–11

  21. Lee WB, Duan R, Ibrahim M, Kandala S, Ranganath A (2019) 16 spatial stream support. doc.: Ieee 802.11-19/1877r0. IEEE TGbe Proposal, pp 1–7

  22. Lee WB, Duan R, Ibrahim M, Kandala S, Ranganath A (2019) Further discussion on feedback overhead reduction. doc.: Ieee 802.11-19/1495r0. IEEE TGbe Proposal, pp 1–16

  23. Huang PK, Cariou L, Stacey R, Bravo D, Klein A, Park M, Cordeiro C (2019) Extremely efficient multi-band operation. doc.: Ieee 802.11-19/0822r0. IEEE TGbe Proposal, pp 1–21

  24. Patil A, Cherian G, Asterjadhi A, Ho D (2019) Multi-link aggregation. doc.: Ieee 802.11-19/0823r0. IEEE TGbe Proposal, pp 1–2

  25. Li Y, Guo Y, Huang G, Zhou Y, Gan M, Liang D (2019) Channel access in multi-band operation. doc.: Ieee 802.11-19/1116r1. IEEE TGbe Proposal, pp 1–25

  26. Naribole S, Kandala S, Lee WB, Ranganath A (2019) Multi-link aggregation considerations. doc.: Ieee 802.11-19/1181r0. IEEE TGbe Proposal, pp 1–9

  27. Guo Y, Huang G, Yu J, Loc P (2019) Ap coordination in eht. doc.: Ieee 802.11-19/0801r0. IEEE TGbe Proposal, pp 1–12

  28. Nan L, Bo S, Chen J, Fang Y (2019) Consideration on multi-ap coordination. doc.: Ieee 802.11-19/1219r0. IEEE TGbe Proposal, pp 1–8

  29. Guo Y, Huang G, Yang B (2019) A unified transmission procedure for multi-ap coordination. doc.: Ieee 802.11-19/1102r0. IEEE TGbe Proposal, pp 1–8

  30. Doostnejad R, Cariou L, Chen X, Kenney T (2019) Multi-ap collaborative bf in ieee 802.11. doc.: Ieee 802.11-19/0772r0. IEEE TGbe Proposal, pp 1–18

  31. Yang B, Lv Y, Chen P (2019) Consideration on joint transmission. doc.: Ieee 802.11-19/1595r0. IEEE TGbe Proposal, pp 1–12

  32. Verma L, Cherian G, Wentink M (2019) Coordinated ap time/frequency sharing in a transmit opportunity in 11be. doc.: Ieee 802.11-19/1582r0. IEEE TGbe Proposal, pp 1–12

  33. Duan R, Ibrahim M, Lee BW, Kandala S (2019) Discussion on harq. doc.: Ieee 802.11-19/1172r0. IEEE TGbe Proposal, pp 1–13

  34. Shilo S, Basson N, Melzer E, Arie YB, Reich M, Ezri D (2019) An harq transmission scheme for 11be. doc.: Ieee 802.11-19/1587r0. IEEE TGbe Proposal, pp 1–14

  35. Shellhapmer S, Doan Z, Chen A, Tian B (2019) Harq simulation results. doc.: Ieee 802.11-19/1078r0. IEEE TGbe Proposal, pp 1–23

  36. Zhang Y, Zhang H, Srinivasa S, Chu L, Cao R, Yu M (2019) Comparisons of harq transmission schemes for 11be. doc.: Ieee 802.11-19/0792r0. IEEE TGbe Proposal, pp 1–30

  37. Latif I, Schelstraete S, Dash D, Wang H (2019) Harq framing. doc.: Ieee 802.11-19/0873r0. IEEE TGbe Proposal, pp 1–20

  38. Kim S, Choi J, Kim J, Jang I, Song T (2019) Latency enhancement for eht. doc.: Ieee 802.11-19/1524r0. IEEE TGbe Proposal, pp 1–13

  39. Zuo X, Meng K, Huang L, Chitrakar R, Ding Y, Urabe Y (2019) Use of uplink persistent allocation for rta. doc.: Ieee 802.11-19/1538r0. IEEE TGbe Proposal, pp 1–8

  40. Kim S, Choi J, Kim J, Jang I, Song T, Park S (2019) Performance evaluation of deterministic service for eht. doc.: Ieee 802.11-19/1523r0. IEEE TGbe Proposal, pp 1–23

  41. Lu L, Yuan L (2019) Multi-band/multi-channel operation for low latency and jitter. doc.: Ieee 802.11-19/1615r0. IEEE TGbe Proposal, pp 1–9

  42. Zeng T, Wang E, Zhao Y, Si X (2019) Use auto repetition in low latency queue. doc.: Ieee 802.11-19/1622r0. IEEE TGbe Proposal, pp 1–17

  43. Cariou L, Stacey R, Cordeiro C, Vegt RD, Tian B, Erceg V, Porat R (2019) 802.11be timeline proposal. doc.: Ieee 802.11-19/0787r2. IEEE TGbe Proposal, pp 1–16

  44. Singh H, Hsu J, Verma L, Lee SS, Ngo C (2011) Green operation of multi-band wireless lan in 60 ghz and 2.4/5 ghz. In: 2011 IEEE Consumer Communications and Networking Conference (CCNC), pp 787–792

  45. Goya S, Le T, Chincholi A, Elkourdi T, Demir A (2018) On the packet allocation of multi-band aggregation wireless networks. Wireless Netw 24(7):2521–2537

    Article  Google Scholar 

  46. Li B, Qu Q, Yan Z, Yang M (2015) Survey on ofdma based mac protocols for the next generation wlan. In: 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp 131–135

  47. Kawamura K, Inoki A, Nakayama S, Wakao K, Takatori Y (2019) Cooperative control of 802.11ax access parameters in high density wireless lan systems. In: 2019 IEEE Wireless Communications and Networking Conference (WCNC), pp 1–6

  48. Jiang C, Zhang Y, Yuan J, Ren Y, Han Z (2016) Cooperative wifi management: Nash bargaining solution and implementation. In: 2016 IEEE Wireless Communications and Networking Conference, pp 1–6

  49. Lei J, Wang Y, Xia Y (2019) Sdn-based centralized downlink scheduling with multiple aps cooperation in wlans. Wireless Commun Mobile Comput 2019

  50. Iwai K, Ohnuma T, Shigeno H, Tanaka Y (2019) Improving of fairness by dynamic sensitivity control and transmission power control with access point cooperation in dense wlan. In: 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC), pp 1–4

  51. Chen B, Yang Q, Li B, Yang M, Yan Z (2018) Multi-cell cooperative transmission for the next generation millimeter-wave wifi network. In: International Conference on Internet of Things as a Service (IoTaaS 2018), pp 246–254

  52. Ge M, Blough DM (2017) High-throughput and fair scheduling for access point cooperation in dense wireless networks. In: 2017 IEEE Wireless Communications and Networking Conference (WCNC), pp 1–6

  53. Ge M, Blough DM (2018) High throughput and fair scheduling for multi-ap multiuser mimo in dense wireless networks. IEEE/ACM Trans Netw 26(5):2414–2427

    Article  Google Scholar 

  54. Wong W, Chan SG (2018) Distributed joint ap grouping and user association for mu-mimo networks. In: IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, pp 252–260

  55. Hamed E, Rahul H, Abdelghany MA, Katabi D (2016) Real-time distributed mimo systems. In: Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16. Association for Computing Machinery, New York, NY, USA, pp 412–425

  56. Wang T, Yang Q, Tan K, Zhang J, Liew SC, Zhang S (2018) Dcap: Improving the capacity of wifi networks with distributed cooperative access points. IEEE Trans Mob Comput 17(2):320–333

    Article  Google Scholar 

  57. Hamed E, Rahul H, Partov B (2018) Chorus: Truly distributed distributed-mimo. In: Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, SIGCOMM ’18. Association for Computing Machinery, NewYork, NY, USA, pp 461–475

  58. Shepard C, Yu H, Anand N, Li E, Marzetta T, Yang R, Zhong L (2012) Argos: Practical many-antenna base stations. In: Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, Mobicom ’12. Association for Computing Machinery, New York, NY, USA, pp 53–64

  59. Gan L, Li B, Yang M, Yan Z, Yang Q (2019) Ofdma based synchronization protocol for distributed mimo in the next generatio wlan. In: International Conference on Internet of Things as a Service (IoTaaS 2019), pp 1–11

  60. Hou J, Montojo J Method and apparatus for supporting distributed mimo in a wireless communication system, 2016-05-22

  61. Dahrouj H, Yu W (2010) Coordinated beamforming for the multicell multi-antenna wireless system. IEEE Trans Wireless Commun 9(5):1748–1759

    Article  Google Scholar 

  62. Shen C, Chang T, Wang K, Qiu Z, Chi C (2012) Distributed robust multicell coordinated beamforming with imperfect csi: An admm approach. IEEE Trans Signal Process 60(6):2988–3003

    Article  MathSciNet  Google Scholar 

  63. He S, Huang Y, Jin S, Yang L (2013) Coordinated beamforming for energy efficient transmission in multicell multiuser systems. IEEE Trans Commun 61(12):4961–4971

    Article  Google Scholar 

  64. Osama AM, Au KS, Suh JH System and methods for enabling coordinated beamforming in overlapping basic service set in wlan, 2016-11-22

  65. Yang K, Calin D, Ozge A, Yiu S Method and apparatus for coordinated beamforming, 2013-12-12

  66. Shrestha S, Fang G, Dutkiewicz E, Huang X (2014) Addressing hidden terminals in wlans with zero forcing coordinated beamforming. In: 2014 14th International Symposium on Communications and Information Technologies (ISCIT), pp 249–253

  67. Bouhafs F, Seyedebrahimi M, Raschella A, Mackay M, Shi Q (2019) Per-flow radio resource management to mitigate interference in dense ieee 802.11 wireless lans. IEEE Trans Mobile Comput PP(9):1–1

    Google Scholar 

  68. Yang M, Li B, Yan Z, Zuo X, Ji L (2016) Multi-bss association for edge users throughput improvements. doc.: Ieee 802.11-16-0590-00-00ax. IEEE TGax Proposal, pp 1–12

  69. Ma Y, Li J, Li H, Zhang H, Hou R (2016) Multi-hop multi-ap multi-channel cooperation for high efficiency wlan. In: 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp 1–7

  70. Karowski N, Willig A, Wolisz A (2017) Cooperation in neighbor discovery. In: 2017 Wireless Days, pp 99–106

  71. Ghanem SAM (2018) Network coded Handover in IEEE 802.11 arxiv 2018:1–13

  72. Li Y, Zhao P, Li B, Yang M, Yan Z (2019) Multi-cell cooperative transmission for the next generation millimeter-wave wifi network. In: 12th EAI International Wireless Internet Conference (Wicon 2019), pp 1–10

  73. Yofune M, Sonobe S, Sugitani A, Amezawa Y, Sato S (2017) Low latency ir-harq scheme for wlan system. In: 2017 IEEE 13th Malaysia International Conference on Communications (MICC), pp 271–275

  74. Masanori Y, Satoshi S, Atsuhiko S, Yasuharu A, Shin-Ich S (2018) Low latency ir-harq for multiband wlan system. IEICE Communications Express 7(6):189–194

    Article  Google Scholar 

  75. Kim J, Kim SH, Sung DK (2018) Hybrid arq-based uplink/downlink fairness enhancement in wlan. IEEE Trans Veh Technol 67(10):10107–10111

    Article  Google Scholar 

  76. Kim J, Kim SH, Sung DK (2018) Hybrid arq-based fairness enhancement in uplink wlan. IEEE Trans Wireless Commun 17(7):4362–4373

    Article  Google Scholar 

  77. Kim J, Kim Y, Mujtaba SA System and method for performing hybrid automatic repeat request (harq) in a wlan system, 2017-04-11

  78. Wang X, Zhang G, Olesen RL, Lou H, Ghosh M, Xia P, Shah NB, Oteri O Systems and methods for smart harq for wifi, 2017-08-10

  79. Ahn J, Yang S, Kim S Method and device for supporting harq in unlicensed band, 2018-10-30

  80. Pazhyannur R, Chandrasekhar V, Kwan RYC Wireless shared spectrum access contention based on harq feedback, 2018-10-16

  81. Liu J, Li S, Song X, Harq/csi ack feedback method over unlicensed carrier 2018-08-28

  82. Fang JA, Babaei A Hybrid automatic repeat request (harq) in listen before talk systems, 2018-05-31

  83. Cavalcanti D, Venkatesan G, Cariou L, Cordeiro C (2019) Tsn support in 802.11 and potential extensions for tgbe. doc.: Ieee 802.11-19/1287r0. IEEE TGbe Proposal, pp 1–22

  84. Finn N (2019) Wireless + tsn = part of the picture. doc.: Ieee 802.11-19/1266r1. IEEE TGbe Proposal, pp 1–12

  85. Farcas J (2019) Ieee 802.1 tsn –an introduction. doc.: Ieee 802.11-19/1298r1. IEEE TGbe Proposal, pp 1–18

  86. Adame T, Carrascosa M, Bellalta B (2019) Time-sensitive networking in ieee 802.11be: On the way to low-latency wifi 7

  87. Cavalcanti D, Cordeiro C, Doostnejad R Methods to enable time sensitive applications in secondary channels in a mmwave ieee 802.11 wlan

  88. Rentschler M, Laukemann P (2012) Towards a reliable parallel redundant wlan black channel. In: 2012 9th IEEE International Workshop on Factory Communication Systems, pp 255–264

  89. Halloush RD (2019) Transmission early-stopping scheme for anti-jamming over delay-sensitive iot applications. IEEE Internet Things J 6(5):7891–7906

    Article  Google Scholar 

  90. Bankov D, Khorov E, Lyakhov A, Sandal M (2019) Enabling real-time applications in wi-fi networks. Int J Distribut Sensor Netw 15(5):1550147719845312

    Google Scholar 

  91. Avdotin E, Bankov D, Khorov E, Lyakhov A (2019) Enabling massive real-time applications in ieee 802.11be networks. In: 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) , pp 1–6

  92. Avdotin E, Bankov D, Khorov E, Lyakhov A (2019) Ofdma resource allocation for real-time applications in ieee 802.11ax networks. In: 2019 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), pp 1–3

  93. Ahn J, Kim YY, Kim RY (2017) Delay oriented vr mode wlan for efficient wireless multi-user virtual reality device. In: 2017 IEEE International Conference on Consumer Electronics (ICCE), pp 122–123

  94. Li M, Tan PH, Sun S, Chew YH (2016) Qoe-aware scheduling for video streaming in 802.11n/ac-based high user density networks. In: 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), pp 1–5

  95. Seno L, Cena G, Scanzio S, Valenzano A, Zunino C (2017) Enhancing communication determinism in wi-fi networks for soft real-time industrial applications. IEEE Trans Ind Inf 13(2):866–876

    Article  Google Scholar 

  96. Pei C, Zhao Y, Liu Y, Tan K, Zhang J, Meng Y, Pei D (2017) Latency-based wifi congestion control in the air for dense wifi networks. In: 2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS), pp 1–10

  97. Pei C, Zhao Y, Chen G, Tang R, Meng Y, Ma M, Ling K, Pei D (2016) Wifi can be the weakest link of round trip network latency in the wild. In: IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications, pp 1–9

  98. Cheng Y, Yang D, Zhou H (2018) Det-lb: A load balancing approach in 802.11 wireless networks for industrial soft real-time applications. IEEE Access 6:32054–32063

    Article  Google Scholar 

  99. Vishalakshi PH, Nagaraja GS (2018) Delay-sensitive smart polling in dense ieee 802.11n network for quality of service. IUP J Telecommun 10(1):7–9

    Google Scholar 

  100. Vishalakshi PH, Nagaraja GS (2017) Highest urgency first scheduling adapted in ieee 802.11n to support quality of service. In: 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT), pp 1521–1525

  101. Saheb SM, Bhattacharjee AK, Dharmasa P, Kar R (2012) Enhanced hybrid coordination function controlled channel access-based adaptive scheduler for delay sensitive traffic in ieee 802.11e networks. IET Netw 1 (4):281–288

    Article  Google Scholar 

  102. Zhu R, Qin Y, Lai CF (2011) Adaptive packet scheduling scheme to support real-time traffic in wlan mesh networks. IET Netw 5(9):1492–1512

    Google Scholar 

  103. Lin P, Chou W, Lin T (2011) Achieving airtime fairness of delay-sensitive applications in multirate ieee 802.11 wireless lans. IEEE Commun Mag 49(9):169–175

    Article  Google Scholar 

  104. Nguyen SH, Vu HL, Andrew LLH (2013) Service differentiation without prioritization in ieee 802.11 wlans. IEEE Trans Mobile Comput 12(10):2076–2090

    Article  Google Scholar 

  105. Tüysüz MF, Mantar HA (2011) Fast retransmission mechanism and end to end qos support for voip applications over ieee 802.11e wlans. In: ICIMU 2011 : Proceedings of the 5th international Conference on Information Technology Multimedia, pp 1–5

  106. Syed I, Roh B (2016) Delay analysis of ieee 802.11e edca with enhanced qos for delay sensitive applications. In: 2016 IEEE 35th International Performance Computing and Communications Conference (IPCCC), pp 1–4

  107. Wu C, Ohzahata S, Ji Y, Kato T (2014) A mac protocol for delay-sensitive vanet applications with self-learning contention scheme. In: 2014 IEEE 11th Consumer Communications and Networking Conference (CCNC), pp 438–443

  108. Kim D, Yeom I, Lee T-J (2018) Mitigating tail latency in ieee 802.11-based networks. Int J Commun Syst 31(1):e3404. e3404 dac.3404

    Article  Google Scholar 

  109. Liu L, Cao X, Cheng Y, Niu Z (2014) Energy-efficient sleep scheduling for delay-constrained applications over wlans. IEEE Trans Veh Technol 63(5):2048–2058

    Article  Google Scholar 

  110. Chen B, Li X, Zhou X, Liu T, Zhu Z (2014) Towards energy optimization based on delay-sensitive traffic for wifi network. In: 2014 IEEE 11th Intl Conf on Ubiquitous Intelligence and Computing and 2014 IEEE 11th Intl Conf on Autonomic and Trusted Computing and 2014 IEEE 14th Intl Conf on Scalable Computing and Communications and Its Associated Workshops, pp 252–259

  111. Zheng H, Chen G, Yu L (2010) Video transmission over ieee 802.11n wlan with adaptive aggregationscheme. In: 2010 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), pp 1–5

  112. Hajlaoui N, Jabri I, Taieb M, Benjemaa M (2012) A frame aggregation scheduler for qos-sensitive applications in ieee 802.11n wlans. In: 2012 International Conference on Communications and Information Technology (ICCIT), pp 221–226

  113. Charfi E, Gueguen C, Chaari L, Cousin B, Kamoun L (2017) Dynamic frame aggregation scheduler for multimedia applications in ieee 802.11n networks. Trans Emerg Telecommun Technol 28(2):e2942. e2942 ett.2942

    Article  Google Scholar 

  114. Azhari SV, Gurbuz O, Ercetin O, Daei MH, Barghi H, Nassiri M (2018) Delay-sensitive smart polling in dense ieee 802.11n network for quality of service. Wireless Netw 26(3):1949–1968

    Article  Google Scholar 

  115. Qian X, Wu B, Ye T (2017) Qos-aware a-mpdu retransmission scheme for 802.11n/ac/ad wlans. IEEE Commun Lett 21(10):2290–2293

    Article  Google Scholar 

  116. Bobarshad H, van der Schaar M, Aghvami AH, Dilmaghani RS, Shikh-Bahaei MR (2012) Analytical modeling for delay-sensitive video over wlan. IEEE Trans Multimedia 14(2):401–414

    Article  Google Scholar 

  117. Tüysüz MF, Mantar HA (2011) A link adaptation scheme for improving voice quality and overall throughput over wlans. In: ICIMU 2011 : Proceedings of the 5th international Conference on Information Technology Multimedia, pp 1–6

  118. Khavasi AA, Suk J (2016) Link adaptation strategies for real-time video transmission over ieee 802.11ac dl-mu. IEEE Trans Commun 64(10):4425–4433

    Article  Google Scholar 

  119. Tramarin F, Vitturi S, Luvisotto M (2016) An innovative approach to rate adaptation in ieee 802.11 real-time industrial networks. In: 2016 IEEE World Conference on Factory Communication Systems (WFCS), pp 1–4

  120. Tian G, Camtepe S, Tian Y (2016) A deadline-constrained 802.11 mac protocol with qos differentiation for soft real-time control. IEEE Trans Indus Inf 12(2):544–554

    Article  Google Scholar 

  121. Mastronarde N, Modares J, Wu C, Chakareski J (2016) Reinforcement learning for energy-efficient delay-sensitive csma/ca scheduling. In: 2016 IEEE Global Communications Conference (GLOBECOM), pp 1–7

  122. Charfi E, Fourati LC, Kamoun L (2014) Qos support of voice/video services under ieee 802.11n wlans. In: 2014 9th International Symposium on Communication Systems, Networks Digital Sign (CSNDSP), pp 600–605

  123. Inaba T, Sakamoto S, Oda T, Ikeda M, Barolli L (2016) A qos-aware admission control system for wlan using fuzzy logic. In: 2016 30th International Conference on Advanced Information Networking and Applications Workshops (WAINA), pp 499–505

  124. Taher NC, Doudane YG, El Hassan B, Agoulmine N (2014) Towards voice/video application support in 802.11e wlans: A model-based admission control algorithm. Comput Commun 39:41–53. Research advances and standardization activities in WLANs

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundations of CHINA (Grant No. 61871322, No. 61771390, No. 61501373, and No. 61271279), the National Science and Technology Major Project (Grant No. 2016ZX03001018-004), and Science and Technology on Avionics Integration Laboratory (20185553035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Li, B. Survey and Perspective on Extremely High Throughput (EHT) WLAN — IEEE 802.11be. Mobile Netw Appl 25, 1765–1780 (2020). https://doi.org/10.1007/s11036-020-01567-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-020-01567-7

Keywords

Navigation