Skip to main content
Log in

Providing Reliable Services over Wireless Networks Using a Low Overhead Random Linear Coding Scheme

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

In this work, we propose a novel intra-flow network coding solution, which is based on the combination of a low overhead Random Linear Coding (RLC) scheme and UDP, to offer a reliable communication service. In the initial protocol specification, the required overhead could be rather large and this had an impact over the observed performance. We therefore include an improvement to reduce such overhead, by decreasing the header length. We describe an analytical model that can be used to assess the performance of the proposed scheme. We also use an implementation within the ns-3 framework to assess the correctness of this model and to broaden the analysis, considering different performance indicators and more complex network topologies. In all cases, the proposed solution clearly outperforms a more traditional approach, in which the TCP protocol is used as a means to offer a reliable communication service.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. The ns-3 network simulator. http://www.nsnam.org/

  2. Ahlswede R, Cai N, Li SY, Yeung R (2000) Network information flow. IEEE Trans Inf Theory 46(4):1204–1216. doi:10.1109/18.850663

    Article  MathSciNet  MATH  Google Scholar 

  3. Albrecht M (2015) The M4RIE Library—version 20121224. The M4RIE Team. https://bitbucket.org/malb/m4rie

  4. Bianchi G (2000) Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J Sel Areas Commun 18(3):535–547. doi:10.1109/49.840210

    Article  Google Scholar 

  5. Chachulski S, Jennings M, Katti S, Katabi D (2007) Trading structure for randomness in wireless opportunistic routing. SIGCOMM Comput Commun Rev 37(4):169–180. doi:10.1145/1282427.1282400

    Article  Google Scholar 

  6. Feizi S, Lucani D E, Médard M (2012) Tunable sparse network coding. In: Proceedings of the international Zurich seminar on Comm, pp 107–110

  7. Gomez D, Hassayoun S, Herren A, Aguero R, Ros D (2012) Impact of network coding on TCP performance in wireless mesh networks. In: 2012 IEEE 23rd international symposium on personal indoor and mobile radio communications (PIMRC), pp 777–782. doi:10.1109/PIMRC.2012.6362888

  8. Gomez D, Rodríguez E, Agüero R, Muñoz L (2014) Reliable communications over wireless mesh networks with inter and intra-flow network coding. In: Proceedings of the 2014 workshop on Ns-3, WNS3 ’14. ACM, New York, pp 4:1–4:8. doi:10.1145/2630777.2630781

  9. Gomez D, Rodriguez E, Aguero R, Munoz L (2014) Reliable communications over lossy wireless channels by means of the combination of UDP and random linear coding. In: 2014 IEEE symposium on computers and communication (ISCC), pp 1–6. doi:10.1109/ISCC.2014.6912516

  10. Heide J, Pedersen M, Fitzek F, Medard M (2011) On code parameters and coding vector representation for practical RLNC. In: 2011 IEEE international conference on communications (ICC), pp 1–5. doi:10.1109/icc.2011.5963013

  11. Heide J, Pedersen M, Fitzek F, Medard M (2014) A perpetual code for network coding. In: 2014 IEEE 79th vehicular technology conference (VTC Spring), pp 1–6. doi:10.1109/VTCSpring.2014.7022790

  12. Henderson T., Floyd S, GA, Nishida Y (2004) The NewReno modification to TCP’s fast recovery algorithm. Internet RFCs. ISSN 2070-1721 RFC 6582. http://www.rfc-editor.org/info/rfc6582

  13. Ho T, Koetter R, Medard M, Karger D, Effros M (2003) The benefits of coding over routing in a randomized setting. IEEE international symposium on information theory. Proceedings, p 7803. doi:10.1109/ISIT.2003.1228459

  14. Jain R, Chiu DM, Hawe W (1984) A quantitative measure of fairness and discrimination for resource allocation in shared computer systems. Technical Report TR-301. DEC Research Repor

  15. Katti S, Rahul H, Hu W, Katabi D, Médard M, Crowcroft J (2008) XORs in the air: practical wireless network coding. IEEE/ACM Trans Netw 16(3):497–510. doi:10.1109/TNET.2008.923722

    Article  Google Scholar 

  16. Khurshid A, Kabir M, Das R (2015) Modified TCP newreno for wireless networks. In: 2015 international conference on networking systems and security (NSysS), pp 1–6. doi:10.1109/NSysS.2015.7042948

  17. Koetter R, Médard M (2003) An algebraic approach to network coding. IEEE/ACM Trans Netw 11(5):782–795. doi:10.1109/TNET.2003.818197

    Article  Google Scholar 

  18. Krigslund J, Hansen J, Hundeboll M, Lucani D, Fitzek F (2013) CORE: COPE with MORE in wireless meshed networks. In: 2013 IEEE 77th vehicular technology conference (VTC Spring), pp 1–6. doi:10.1109/VTCSpring.2013.6692495

  19. Lefevre F, Vivier G (2000) Understanding TCP’s behavior over wireless links. In: Symposium on communications and vehicular technology, 2000. SCVT-200, pp 123–130. doi:10.1109/SCVT.2000.923350

  20. Li SY, Yeung R, Cai N (2003) Linear network coding. IEEE Trans Inf Theory 49(2):371–381. doi:10.1109/TIT.2002.807285

    Article  MathSciNet  MATH  Google Scholar 

  21. Luby M (2002) LT codes. In: The 43rd annual IEEE symposium on foundations of computer science, 2002. Proceedings, pp 271–280. doi:10.1109/SFCS.2002.1181950

  22. Lucani DE, Pedersen MV, Heide J, Fitzek FHP (2014) Fulcrum network codes: a code for fluid allocation of complexity. CoRR abs/1404.6620. arXiv:1404.6620

  23. Mascolo S, Casetti C, Gerla M, Sanadidi MY, Wang R (2001) Tcp westwood: Bandwidth estimation for enhanced transport over wireless links. In: Proceedings of the 7th annual international conference on mobile computing and networking, MobiCom ‘01. ACM, New York, pp 287–297. doi:10.1145/381677.381704

  24. Shokrollahi A (2006) Raptor codes. IEEE Trans Inf Theory 52(6):2551–2567. doi:10.1109/TIT.2006.874390

    Article  MathSciNet  MATH  Google Scholar 

  25. Sorensen C, Lucani D, Fitzek F, Medard M (2014) On-the-fly overlapping of sparse generations: a tunable sparse network coding perspective. In: 2014 IEEE 80th vehicular technology conference (VTC Fall), pp 1–5. doi:10.1109/VTCFall.2014.6966091

  26. Stewart R, Xie Q, Mornmeault K, Sharp H, Taylor T, Rytina I, Kalla M, Zhang L (2000) Stream control transport protocol. Tech. rep., RFC 2960

  27. Sundararajan J, Shah D, Medard M, Mitzenmacher M, Barros J (2009) Network coding meets TCP. In: INFOCOM 2009. IEEE, pp 280–288. doi:10.1109/INFCOM.2009.5061931

  28. Trullols-Cruces O, Barcelo-Ordinas J, Fiore M (2011) Exact decoding probability under random linear network coding. IEEE Commun Lett 15(1):67–69. doi:10.1109/LCOMM.2010.110310.101480

    Article  Google Scholar 

  29. Zorzi M, Chockalingam A, Rao R (2000) Throughput analysis of TCP on channels with memory. IEEE J Sel Areas Commun 18(7):1289–1300. doi:10.1109/49.857929

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Spanish Government by its funding through the project COSAIF, “Connectivity as a Service: Access for the Internet of the Future” (TEC2012-38754-C02-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Garrido.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrido, P., Gómez, D., Lanza, J. et al. Providing Reliable Services over Wireless Networks Using a Low Overhead Random Linear Coding Scheme. Mobile Netw Appl 22, 1113–1123 (2017). https://doi.org/10.1007/s11036-016-0731-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-016-0731-7

Keywords

Navigation