Skip to main content
Log in

The mitochondrial carrier homolog 2 is involved in down-regulation of influenza A virus replication

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The mitochondrial carrier homolog 2 (MTCH2) is a mitochondrial outer membrane protein regulating mitochondrial metabolism and functions in lipid homeostasis and apoptosis. Experimental data on the interaction of MTCH2 with viral proteins in virus-infected cells are very limited. Here, the interaction of MTCH2 with PA subunit of influenza A virus RdRp and its effects on viral replication was investigated.

Methods

The human MTCH2 protein was identified as the influenza A virus PA-related cellular factor with the Y2H assay. The interaction between GST.MTCH2 and PA protein co-expressed in transfected HEK293 cells was evaluated by GST-pull down. The effect of MTCH2 on virus replication was determined by quantification of viral transcript and/or viral proteins in the cells transfected with MTCH2-encoding plasmid or MTCH2-siRNA. An interaction model of MTCH2 and PA was predicted with protein modeling/docking algorithms.

Results

It was observed that PA and GST.MTCH2 proteins expressed in HEK293 cells were co-precipitated by glutathione-agarose beads. The influenza A virus replication was stimulated in HeLa cells whose MTCH2 expression was suppressed with specific siRNA, whereas the increase of MTCH2 in transiently transfected HEK293 cells inhibited viral RdRp activity. The results of a Y2H assay and protein-protein docking analysis suggested that the amino terminal part of the viral PA (nPA) can bind to the cytoplasmic domain comprising amino acid residues 253 to 282 of the MTCH2.

Conclusion

It is suggested that the host mitochondrial MTCH2 protein is probably involved in the interaction with the viral polymerase protein PA to cause negative regulatory effect on influenza A virus replication in infected cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used during the present study are available from the corresponding author uponreasonable request.

References

  1. Guna A, Stevens TA, Inglis AJ et al (2022) MTCH2 is a mitochondrial outer membrane protein insertase. Science 378(6617):317–322. https://doi.org/10.1126/science.add1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Palmieri F (2008) Diseases caused by defects of mitochondrial carriers: a review. Biochim Biophys Acta 1777(7–8):564–578. https://doi.org/10.1016/j.bbabio.2008.03.008

    Article  CAS  PubMed  Google Scholar 

  3. Palmieri F (2013) Mitochondrial metabolite carrier protein family. In: Lane MD, Lennarz WJ (eds) Encyclopedia of Biological Chemistry, 2nd edn. Academic, Waltham, pp 149–159

    Chapter  Google Scholar 

  4. Schwarz M, Andrade-Navarro MA, Gross A (2007) Mitochondrial carriers and pores: key regulators of the mitochondrial apoptotic program? Apoptosis 12(5):869–876. https://doi.org/10.1007/s10495-007-0748-2

    Article  CAS  PubMed  Google Scholar 

  5. Zaltsman Y, Shachnai L, Yivgi-Ohana N et al (2010) MTCH2/MIMP is a major facilitator of tBID recruitment to mitochondria. Nat Cell Biol 12(6):553–562. https://doi.org/10.1038/ncb2057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maryanovich M, Zaltsman Y, Ruggiero A et al (2015) An MTCH2 pathway repressing mitochondria metabolism regulates haematopoietic stem cell fate. Nat Commun 6:7901. https://doi.org/10.1038/ncomms8901

    Article  CAS  PubMed  Google Scholar 

  7. Rottiers V, Francisco A, Platov M et al (2017) MTCH2 is a conserved regulator of lipid homeostasis. Obes (Silver Spring) 25(3):616–625. https://doi.org/10.1002/oby.21751

    Article  CAS  Google Scholar 

  8. Ruggiero A, Aloni E, Korkotian E et al (2017) Loss of forebrain MTCH2 decreases mitochondria motility and calcium handling and impairs hippocampal-dependent cognitive functions. Sci Rep 7:44401. https://doi.org/10.1038/srep44401

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rozenblatt-Rosen O, Deo RC, Padi M et al (2012) Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature 487(7408):491–495. https://doi.org/10.1038/nature11288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nainu F, Shiratsuchi A, Nakanishi Y (2017) Induction of apoptosis and subsequent phagocytosis of Virus-infected cells as an antiviral mechanism. Front Immunol 8:1220. https://doi.org/10.3389/fimmu.2017.01220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rex DAB, Keshava Prasad TS, Kandasamy RK (2022) Revisiting regulated cell death responses in viral infections. Int J Mol Sci 23(13). https://doi.org/10.3390/ijms23137023

  12. Ampomah PB, Lim LHK (2020) Influenza a virus-induced apoptosis and virus propagation. Apoptosis 25(1–2):1–11. https://doi.org/10.1007/s10495-019-01575-3

    Article  CAS  PubMed  Google Scholar 

  13. CaGlayan E, Turan K (2021) Expression profiles of interferon-related genes in cells infected with influenza A viruses or transiently transfected with plasmids encoding viral RNA polymerase. Turk J Biol 45(1):88–103. https://doi.org/10.3906/biy-2005-73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nayak DP, Hui EK, Barman S (2004) Assembly and budding of influenza virus. Virus Res 106(2):147–165. https://doi.org/10.1016/j.virusres.2004.08.012

    Article  CAS  PubMed  Google Scholar 

  15. Plotch SJ, Bouloy M, Krug RM (1979) Transfer of 5’-terminal cap of globin mRNA to influenza viral complementary RNA during transcription in vitro. Proc Natl Acad Sci U S A 76(4):1618–1622. https://doi.org/10.1073/pnas.76.4.1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krug RM, Morgan MA, Shatkin AJ (1976) Influenza viral mRNA contains internal N6-methyladenosine and 5’-terminal 7-methylguanosine in cap structures. J Virol 20(1):45–53. https://doi.org/10.1128/JVI.20.1.45-53.1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Plotch SJ, Tomasz J, Krug RM (1978) Absence of detectable capping and methylating enzymes in influenza virions. J Virol 28(1):75–83. https://doi.org/10.1128/JVI.28.1.75-83.1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shirayama R, Shoji M, Sriwilaijaroen N, Hiramatsu H, Suzuki Y, Kuzuhara T (2016) Inhibition of PA endonuclease activity of influenza virus RNA polymerase by Kampo medicines. Drug Discov Ther 10(2):109–113. https://doi.org/10.5582/ddt.2016.01010

    Article  CAS  PubMed  Google Scholar 

  19. Kim JH, Hatta M, Watanabe S, Neumann G, Watanabe T, Kawaoka Y (2010) Role of host-specific amino acids in the pathogenicity of avian H5N1 influenza viruses in mice. J Gen Virol 91(Pt 5):1284–1289. https://doi.org/10.1099/vir.0.018143-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sakabe S, Takano R, Nagamura-Inoue T et al (2013) Differences in cytokine production in human macrophages and in virulence in mice are attributable to the acidic polymerase protein of highly pathogenic influenza a virus subtype H5N1. J Infect Dis 207(2):262–271. https://doi.org/10.1093/infdis/jis523

    Article  CAS  PubMed  Google Scholar 

  21. James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144(4):1425–1436. https://doi.org/10.1093/genetics/144.4.1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nagata K, Saito S, Okuwaki M et al (1998) Cellular localization and expression of template-activating factor I in different cell types. Exp Cell Res 240(2):274–281. https://doi.org/10.1006/excr.1997.3930

    Article  CAS  PubMed  Google Scholar 

  23. Pham PTV, Turan K, Nagata K, Kawaguchi A (2018) Biochemical characterization of avian influenza viral polymerase containing PA or PB2 subunit from human influenza a virus. Microbes Infect 20(6):353–359. https://doi.org/10.1016/j.micinf.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  24. Turan K, Mibayashi M, Sugiyama K, Saito S, Numajiri A, Nagata K (2004) Nuclear MxA proteins form a complex with influenza virus NP and inhibit the transcription of the engineered influenza virus genome. Nucleic Acids Res 32(2):643–652. https://doi.org/10.1093/nar/gkh192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sugiyama K, Kawaguchi A, Okuwaki M, Nagata K (2015) pp32 and APRIL are host cell-derived regulators of influenza virus RNA synthesis from cRNA. Elife 4. https://doi.org/10.7554/eLife.08939

  26. Sambrook J, Fritsch ER, Maniatis T (1989) Molecular cloning: a Laboratory Manual. Cold Spring Harbor Laboratory Press. In, Cold Spring Harbor, NY

    Google Scholar 

  27. Gietz RD, Schiestl RH (2007) Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):38–41. https://doi.org/10.1038/nprot.2007.15

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40. https://doi.org/10.1186/1471-2105-9-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589. https://doi.org/10.1038/s41586-021-03819-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Varadi M, Anyango S, Deshpande M et al (2022) AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50(D1):D439–D444. https://doi.org/10.1093/nar/gkab1061

    Article  CAS  PubMed  Google Scholar 

  31. Kozakov D, Hall DR, Xia B et al (2017) The ClusPro web server for protein-protein docking. Nat Protoc 12(2):255–278. https://doi.org/10.1038/nprot.2016.169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fan H, Walker AP, Carrique L et al (2019) Structures of influenza a virus RNA polymerase offer insight into viral genome replication. Nature 573(7773):287–290. https://doi.org/10.1038/s41586-019-1530-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Laskowski RA (2007) Enhancing the functional annotation of PDB structures in PDBsum using key figures extracted from the literature. Bioinformatics 23(14):1824–1827. https://doi.org/10.1093/bioinformatics/btm085

    Article  CAS  PubMed  Google Scholar 

  34. Xue LC, Rodrigues JP, Kastritis PL et al (2016) PRODIGY: a web server for predicting the binding affinity of protein-protein complexes. Bioinformatics 32(23):3676–3678. https://doi.org/10.1093/bioinformatics/btw514

    Article  CAS  PubMed  Google Scholar 

  35. Gross A (2005) Mitochondrial carrier homolog 2: a clue to cracking the BCL-2 family riddle? J Bioenerg Biomembr 37(3):113–119. https://doi.org/10.1007/s10863-005-6222-3

    Article  CAS  PubMed  Google Scholar 

  36. Ruprecht JJ, Kunji ERS (2020) The SLC25 mitochondrial carrier family: structure and mechanism. Trends Biochem Sci 45(3):244–258. https://doi.org/10.1016/j.tibs.2019.11.001

    Article  CAS  PubMed  Google Scholar 

  37. Kodym R, Kodym E, Story MD (2009) 2’-5’-Oligoadenylate synthetase is activated by a specific RNA sequence motif. Biochem Biophys Res Commun 388(2):317–322. https://doi.org/10.1016/j.bbrc.2009.07.167

    Article  CAS  PubMed  Google Scholar 

  38. Chen G, Liu CH, Zhou L, Krug RM (2014) Cellular DDX21 RNA helicase inhibits influenza a virus replication but is counteracted by the viral NS1 protein. Cell Host Microbe 15(4):484–493. https://doi.org/10.1016/j.chom.2014.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kocmar T, Caglayan E, Rayaman E, Nagata K, Turan K (2022) Human sorting nexin 2 protein interacts with Influenza A virus PA protein and has a negative regulatory effect on the virus replication. Mol Biol Rep 49(1):497–510. https://doi.org/10.1007/s11033-021-06906-9

    Article  CAS  PubMed  Google Scholar 

  40. McKellar J, Rebendenne A, Wencker M, Moncorge O, Goujon C (2021) Mammalian and avian host cell influenza a restriction factors. Viruses 13(3). https://doi.org/10.3390/v13030522

  41. Almond JW (1977) A single gene determines the host range of influenza virus. Nature 270(5638):617–618. https://doi.org/10.1038/270617a0

    Article  CAS  PubMed  Google Scholar 

  42. Subbarao EK, London W, Murphy BR (1993) A single amino acid in the PB2 gene of influenza a virus is a determinant of host range. J Virol 67(4):1761–1764. https://doi.org/10.1128/JVI.67.4.1761-1764.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gao H, Sun H, Hu J et al (2015) Twenty amino acids at the C-terminus of PA-X are associated with increased influenza a virus replication and pathogenicity. J Gen Virol 96(8):2036–2049. https://doi.org/10.1099/vir.0.000143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gui R, Chen Q (2021) Molecular events involved in Influenza A Virus-Induced cell death. Front Microbiol 12:797789. https://doi.org/10.3389/fmicb.2021.797789

    Article  PubMed  Google Scholar 

  45. Chen W, Calvo PA, Malide D et al (2001) A novel influenza a virus mitochondrial protein that induces cell death. Nat Med 7(12):1306–1312. https://doi.org/10.1038/nm1201-1306

    Article  CAS  PubMed  Google Scholar 

  46. Ehrhardt C, Wolff T, Pleschka S et al (2007) Influenza a virus NS1 protein activates the PI3K/Akt pathway to mediate antiapoptotic signaling responses. J Virol 81(7):3058–3067. https://doi.org/10.1128/JVI.02082-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhirnov OP, Konakova TE, Wolff T, Klenk HD (2002) NS1 protein of influenza a virus down-regulates apoptosis. J Virol 76(4):1617–1625. https://doi.org/10.1128/jvi.76.4.1617-1625.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a grant from the Scientific and Technological Research Council of Turkey (TÜBİTAK; grant no: SBAG-112S518).

Author information

Authors and Affiliations

Authors

Contributions

P.U., E.Ç., E.R. and K.T. conducted the experiments. P.U., E.Ç. and K.T. drafted the manuscript. K.N. and K.T. contributed to the conception and design of the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kadir Turan.

Ethics declarations

Ethical approval

In this study, neither human subjects nor animals were used.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulupinar, P., Çağlayan, E., Rayaman, E. et al. The mitochondrial carrier homolog 2 is involved in down-regulation of influenza A virus replication. Mol Biol Rep 51, 642 (2024). https://doi.org/10.1007/s11033-024-09584-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09584-5

Keywords

Navigation