Skip to main content
Log in

Association of the C3953T (rs1143634) variant of the interleukin 1 beta gene with the features of a complicated course of COVID-19-associated pneumonia

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The pro-inflammatory cytokine IL-1 plays an important role in severe COVID-19. A change in IL-1 production may be associated with a mutation in the IL1Β gene. Our study analyzed the impact of the IL1Β gene variants (rs1143634) on disease progression in patients with severe COVID-19 pneumonia, taking into account treatment strategies.

Methods and results

The study enrolled 117 patients with severe COVID-19 pneumonia. The IL1Β gene variants were identified using the polymerase chain reaction-restriction fragment length polymorphism method. In the group of patients, the following genotype frequencies were found based on the investigated rs1143634 variant of the IL1Β gene: CC–65.8%, CT–28.2%, and TT–6.0%. Our results showed that the group of patients with the T allele of the IL1Β gene had higher leukocyte counts (p = 0.040) and more pronounced lymphopenia (p = 0.007). It was determined that patients carrying the T allele stayed on ventilators significantly longer (p = 0.049) and required longer treatment with corticosteroids (p = 0.045).

Conclusion

Identifying variants of the IL1Β gene can be used as a predictive tool for assessing the severity of COVID-19 pneumonia and tailoring personalized treatment strategies. Further research with a larger patient cohort is required to validate these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Worldometers (2023). https://www.worldometers.info/coronavirus/ Accessed 19 Mar 2024.

  2. HO, World Health Organization. https://www.who.int/news-room/speeches/item/who-director-general-s-opening-remarks-at-the-media-briefing---5-may-2023 /Accessed 19 Mar 2024

  3. Vatansever HS, Becer E (2020) Relationship between IL-6 and COVID-19: to be considered during treatment. Future Virol. https://doi.org/10.2217/fvl-2020-0168

    Article  PubMed Central  Google Scholar 

  4. Tanaka T, Narazaki M, Kishimoto T (2014) IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 6(10):a016295. https://doi.org/10.1101/cshperspect.a016295

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gallenga CE, Pandolfi F, Al C et al (2019) Interleukin-1 family cytokines and mast cells: activation and inhibition. J Biol Regul Homeost Agents 33(1):1–6

    CAS  PubMed  Google Scholar 

  6. Italiani P, Puxeddu I, Napoletano S et al (2018) Circulating levels of IL-1 family cytokines and receptors in Alzheimer’s disease: new markers of disease progression? J Neuroinflammation 15(1):342. https://doi.org/10.1186/s12974-018-1376-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rodrigues TS, de Sá KSG, Ishimoto AY et al (2021) Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J Exp Med 218(3):e20201707. https://doi.org/10.1084/jem.20201707

    Article  CAS  PubMed  Google Scholar 

  8. Kaidashev I, Shlykova O, Izmailova O (2021) Host gene variability and SARS-CoV-2 infection: A review article. Heliyon 7(8):e07863. https://doi.org/10.1016/j.heliyon.2021.e07863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fang Y, Xie H, Lin Z (2018) Association between IL-1β + 3954C/T polymorphism and myocardial infarction risk: A meta-analysis. Medicine (Baltimore) 97(30):e11645. https://doi.org/10.1097/MD.0000000000011645

    Article  CAS  PubMed  Google Scholar 

  10. MOZ UA, (2021) Algorithm for providing hospital medical care in case of COVID-19. https://moz.gov.ua/uploads/7/35121-algoritm_stac_covid_19.pdf / Accessed 19 Mar 2024

  11. Kolov G, Grytsay M, Tsokalo V et al (2021) Variants of IL1 (C3954T, RS1143634), PON1 (C108T, RS705379) genes as prognostic markers of osteomyelitis risk and its complications. Georgian Med News 318:93–98

    Google Scholar 

  12. 1000 Genomes Project Phase 3, (2023). http://www.ensembl.org/ Accessed 19 March 2024

  13. Sefik E, Qu R, Junqueira C et al (2022) Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature 606(7914):585–593. https://doi.org/10.1038/s41586-022-04802-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moore JB, June CH (2020) Cytokine release syndrome in severe COVID-19. Science 368(6490):473–474. https://doi.org/10.1126/science.abb8925

    Article  CAS  PubMed  Google Scholar 

  15. Coperchini F, Chiovato L, Croce L et al (2020) The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 53:25–32. https://doi.org/10.1016/j.cytogfr.2020.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang J, Jiang M, Chen X et al (2020) Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J Leukoc Biol 108(1):17–41. https://doi.org/10.1002/JLB.3COVR0520-272R

    Article  CAS  PubMed  Google Scholar 

  17. She YX, Yu QY, Tang XX (2021) Role of interleukins in the pathogenesis of pulmonary fibrosis. Cell Death Discov 7(1):52. https://doi.org/10.1038/s41420-021-00437-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Root-Bernstein R (2021) Innate receptor activation patterns involving TLR and NLR synergisms in COVID-19, ALI/ARDS and sepsis cytokine storms: a review and model making novel predictions and therapeutic suggestions. Int J Mol Sc 22(4):2108. https://doi.org/10.3390/ijms22042108

    Article  CAS  Google Scholar 

  19. Qin C, Zhou L, Hu Z et al (2020) Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in wuhan. China Clin Infect Dis 71(15):762–768. https://doi.org/10.1093/cid/ciaa248

    Article  CAS  PubMed  Google Scholar 

  20. Tan L, Wang Q, Zhang D et al (2020) Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study [published correction appears in Signal Transduct Target Ther. 2020 Apr 29;5(1):61]. Signal Transduct Target Ther 5(1):33. https://doi.org/10.1038/s41392-020-0148-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cortés-Vieyra R, Gutiérrez-Castellanos S, Álvarez-Aguilar C et al (2021) Behavior of eosinophil counts in recovered and deceased COVID-19 patients over the course of the disease. Viruses 13(9):1675. https://doi.org/10.3390/v13091675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tong X, Cheng A, Yuan X et al (2021) Characteristics of peripheral white blood cells in COVID-19 patients revealed by a retrospective cohort study. BMC Infect Dis 21(1):1236. https://doi.org/10.1186/s12879-021-06899-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Iannaccone G, Scacciavillani R, Del Buono MG et al (2020) Weathering the cytokine storm in COVID-19: therapeutic implications. Cardiorenal Med 10(5):277–287. https://doi.org/10.1159/000509483

    Article  CAS  PubMed  Google Scholar 

  24. Potere N, Del Buono MG, Caricchio R et al (2022) Interleukin-1 and the NLRP3 inflammasome in COVID-19: pathogenetic and therapeutic implications. EBioMedicine 85:104299. https://doi.org/10.1016/j.ebiom.2022.104299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Caricchio R, Gallucci M, Dass C et al (2021) Preliminary predictive criteria for COVID-19 cytokine storm. Ann Rheum Dis 80(1):88–95. https://doi.org/10.1136/annrheumdis-2020-218323

    Article  CAS  PubMed  Google Scholar 

  26. van de Veerdonk FL, Netea MG (2020) Blocking IL-1 to prevent respiratory failure in COVID-19. Crit Care 2:445. https://doi.org/10.1186/s13054-020-03166-0

    Article  Google Scholar 

  27. Neira-Goulart M, de Sá NBR, Ribeiro-Alves M et al (2023) Inflammasome genes polymorphisms are associated with progression to mechanical ventilation and death in a cohort of hospitalized COVID-19 patients in a reference hospital in Rio de Janeiro. Brazil Gene 865:147325. https://doi.org/10.1016/j.gene.2023.147325

    Article  CAS  PubMed  Google Scholar 

  28. Salihefendić L, Čeko I, Bešić L et al (2023) Identification of human genetic variants modulating the course of COVID-19 infection with importance in other viral infections. Front Genet 14:1240245. https://doi.org/10.3389/fgene.2023.1240245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Borthwick LA (2016) The IL-1 cytokine family and its role in inflammation and fibrosis in the lung. Semin Immunopathol 38(4):517–534. https://doi.org/10.1007/s00281-016-0559-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ronchetti S, Migliorati G, Bruscoli S et al (2018) Defining the role of glucocorticoids in inflammation. Clin Sci (Lond) 132(14):1529–1543. https://doi.org/10.1042/CS20171505

    Article  CAS  PubMed  Google Scholar 

  31. RECOVERY Collaborative Group, Horby P, Lim WS et al (2021) Dexamethasone in hospitalized patients with Covid-19. N Engl J Med 384(8):693–704. https://doi.org/10.1056/NEJMoa2021436

    Article  Google Scholar 

  32. Sarkar S, Khanna P, Soni KD (2021) Are the steroids a blanket solution for COVID-19? a systematic review and meta-analysis. J Med Virol 93(3):1538–1547. https://doi.org/10.1002/jmv.26483

    Article  CAS  PubMed  Google Scholar 

  33. Lee SW, Tsou AP, Chan H et al (1988) Glucocorticoids selectively inhibit the transcription of the interleukin 1 beta gene and decrease the stability of interleukin 1 beta mRNA. Proc Natl Acad Sci USA 85(4):1204–1208. https://doi.org/10.1073/pnas.85.4.1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang G, Zhang L, Duff GW (1997) A negative regulatory region containing a glucocorticosteroid response element (nGRE) in the human interleukin-1beta gene. DNA Cell Biol 16(2):145–152. https://doi.org/10.1089/dna.1997.16.145

    Article  CAS  PubMed  Google Scholar 

  35. Alexaki VI, Henneicke H (2021) The role of glucocorticoids in the management of COVID-19. Horm Metab Res 53(1):9–15. https://doi.org/10.1055/a-1300-2550

    Article  CAS  PubMed  Google Scholar 

  36. Yu Z, Han S, Cao X et al (2012) Genetic polymorphisms in adipokine genes and the risk of obesity: a systematic review and meta-analysis. Obesity (Silver Spring) 20(2):396–406. https://doi.org/10.1038/oby.2011.148

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to manuscript preparation. Conception, design, and methodology: VP, ZR, and NG. Data collection: VP, HS, LZ. Molecular analysis: OP, VV, OI. Data Curation: YC. Manuscript drafting: YC, LF. Statistical analysis: LF. Critical revision and editing: VP, ZR, NG. AA. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Liliia Fishchuk.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was conducted in accordance with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Poltava State Medical University (minutes No.188 as of November 25, 2020). Informed consent was obtained from all individuals participating in this study.

Data availability

No data associated with the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokhylko, V., Cherniavska, Y., Fishchuk, L. et al. Association of the C3953T (rs1143634) variant of the interleukin 1 beta gene with the features of a complicated course of COVID-19-associated pneumonia. Mol Biol Rep 51, 630 (2024). https://doi.org/10.1007/s11033-024-09569-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09569-4

Keywords

Navigation