Skip to main content
Log in

Genome-wide characterization and expression analysis of the HD-Zip II gene family in response to drought and GA3 stresses in Nicotiana tabacum

  • Brief Report
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Homeodomain-leucine ZIPper (HD-ZIP) transcription factors play crucial roles in plant growth, development, and stress responses. The HD-ZIP family is categorised into four groups (HD-ZIP I-IV). While extensive genome-wide studies have been conducted on the HD-ZIP I, III, and IV subfamily in Nicotiana tabacum (tobacco), comprehensive reports on the HD-ZIP II subfamily genes are limited.

Methods

Bioinformatics resources and tools were utilised to analyse molecular characteristics, phylogenetic homology, and protein interactions. Expression pattern analyses in various tissues and the relative expression of NtHD-ZIP II genes under drought and GA3 treatment were assessed by qRT-PCR.

Results

In this study, 24 HD-ZIP II members were systematically identified and categorised into seven independent clades through phylogenetic analysis involving tobacco and other plant species. We found that 19 NtHD-ZIP II genes exhibited tissue-specific expression. The transcripts of NtHD-ZIPII3, 4, 14, 23, 24 were notably induced under the drought treatments, while those of NtHD-ZIPII7, 11, 12, 20 were suppressed. Furthermore, NtHD-ZIPII15 transcripts decreased following GA3 treatment, whereas the transcripts of NtHD-ZIPII7, 8, 11, 12 were induced after GA3 treatment. Notably, an increase in trichomes was observed in tobacco leaves treated with GA3 and subjected to drought.

Conclusions

The expression levels of some HD-ZIP II genes were altered, and an increase in glandular trichomes was induced under GA3 and drought treatments in tobacco. Overall, our findings provide insights into the expression patterns of NtHD-ZIP II genes and will facilitate their functional characterisation in future studies.

Highlights

Genome-Wide Identification and Expression Analysis of 24 HD-ZIP II Subfamily Genes in Nicotiana tabacum Including, Differential Expression in Leaves Under Drought and GA3 Stress as Assessed by qRT-PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No Data associated in the manuscript.

Abbreviations

HD-ZIP:

Homeodomain-leucine ZIPper

Nt:

Nicotiana tabacum

CPSCE:

Cys, Pro, Ser, Cys, Glu

START:

steroidogenic acute regulatory protein-lipid transfer domain

SAD:

START associated domain

MEKHLA:

Met-Glu-Lys-His-Leu-Ala domain

WT:

wild type

HOX:

homeobox

UTR:

untranslated region

CDS:

Coding sequence

GA:

gibberellin

ABA:

abscisic acid

JA:

jasmonic acid

SA:

salicylic acid

References

  1. Li Y, Yang Z, Zhang Y, Guo J, Liu L, Wang C, Wang B, Han G (2022) The roles of HD-ZIP proteins in plant abiotic stress tolerance. Front Plant Sci 13:1027071. https://doi.org/10.3389/fpls.2022.1027071

    Article  PubMed Central  PubMed  Google Scholar 

  2. Li Y, Bai B, Wen F, Zhao M, Xia Q, Yang DH, Wang G (2019) Genome-wide identification and expression analysis of HD-ZIP I gene subfamily in Nicotiana tabacum. Genes 10(8). https://doi.org/10.3390/genes10080575

  3. Perotti MF, Arce AL, Chan RL (2021) The underground life of homeodomain-leucine zipper transcription factors. J Exp Bot 72(11):4005–4021. https://doi.org/10.1093/jxb/erab112

    Article  CAS  PubMed  Google Scholar 

  4. Roodbarkelari F, Groot EP (2017) Regulatory function of homeodomain-leucine zipper (HD-ZIP) family proteins during embryogenesis. New Phytol 213(1):95–104. https://doi.org/10.1111/nph.14132

    Article  CAS  PubMed  Google Scholar 

  5. Wu M, Chang J, Han X, Shen J, Yang L, Hu S, Huang BB, Xu H, Xu M, Wu S et al (2023) A HD-ZIP transcription factor specifies fates of multicellular trichomes via dosage-dependent mechanisms in tomato. Dev Cell 58(4):278–288e275. https://doi.org/10.1016/j.devcel.2023.01.009

    Article  CAS  PubMed  Google Scholar 

  6. Khosla A, Paper JM, Boehler AP, Bradley AM, Neumann TR, Schrick K (2014) HD-Zip proteins GL2 and HDG11 have redundant functions in Arabidopsis trichomes, and GL2 activates a positive feedback Loop via MYB23. Plant Cell 26(5):2184–2200. https://doi.org/10.1105/tpc.113.120360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Cai Y, Bartholomew ES, Dong M, Zhai X, Yin S, Zhang Y, Feng Z, Wu L, Liu W, Shan N et al (2020) The HD-ZIP IV transcription factor GL2-LIKE regulates male flowering time and fertility in cucumber. J Exp Bot 71(18):5425–5437. https://doi.org/10.1093/jxb/eraa251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Li F, Fu M, Zhou S, Xie Q, Chen G, Chen X, Hu Z (2023) A tomato HD-zip I transcription factor, VAHOX1, acts as a negative regulator of fruit ripening. Hortic Res 10(1):uhac236. https://doi.org/10.1093/hr/uhac236

    Article  PubMed  Google Scholar 

  9. Tang Y, Bao X, Wang S, Liu Y, Tan J, Yang M, Zhang M, Dai R, Yu X (2019) A physic nut stress-responsive HD-Zip transcription factor, JcHDZ07, confers enhanced sensitivity to salinity stress in transgenic Arabidopsis. Front Plant Sci 10:942. https://doi.org/10.3389/fpls.2019.00942

    Article  PubMed Central  PubMed  Google Scholar 

  10. Hrmova M, Hussain SS (2021) Plant Transcription Factors Involved in Drought and Associated stresses. Int J Mol Sci 22(11). https://doi.org/10.3390/ijms22115662

  11. Liu X, Li A, Wang S, Lan C, Wang Y, Li J, Zhu J (2022) Overexpression of Pyrus sinkiangensis HAT5 enhances drought and salt tolerance, and low-temperature sensitivity in transgenic tomato. Front Plant Sci 13:1036254. https://doi.org/10.3389/fpls.2022.1036254

    Article  PubMed Central  PubMed  Google Scholar 

  12. Yang YY, Shan W, Kuang JF, Chen JY, Lu WJ (2020) Four HD-ZIPs are involved in banana fruit ripening by activating the transcription of ethylene biosynthetic and cell wall-modifying genes. Plant Cell Rep 39(3):351–362. https://doi.org/10.1007/s00299-019-02495-x

    Article  CAS  PubMed  Google Scholar 

  13. Steindler C, Matteucci A, Sessa G, Weimar T, Ohgishi M, Aoyama T, Morelli G, Ruberti I (1999) Shade avoidance responses are mediated by the ATHB-2 HD-zip protein, a negative regulator of gene expression. Development 126(19):4235–4245. https://doi.org/10.1242/dev.126.19.4235

    Article  CAS  PubMed  Google Scholar 

  14. Turchi L, Baima S, Morelli G, Ruberti I (2015) Interplay of HD-Zip II and III transcription factors in auxin-regulated plant development. J Exp Bot 66(16):5043–5053. https://doi.org/10.1093/jxb/erv174

    Article  CAS  PubMed  Google Scholar 

  15. Bou-Torrent J, Salla-Martret M, Brandt R, Musielak T, Palauqui JC, Martínez-García JF, Wenkel S (2012) ATHB4 and HAT3, two class II HD-ZIP transcription factors, control leaf development in Arabidopsis. Plant Signal Behav 7(11):1382–1387. https://doi.org/10.4161/psb.21824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Carabelli M, Turchi L, Morelli G, Østergaard L, Ruberti I, Moubayidin L (2021) Coordination of biradial-to-radial symmetry and tissue polarity by HD-ZIP II proteins. Nat Commun 12(1):4321. https://doi.org/10.1038/s41467-021-24550-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Wei M, Liu A, Zhang Y, Zhou Y, Li D, Dossa K, Zhou R, Zhang X, You J (2019) Genome-wide characterization and expression analysis of the HD-Zip gene family in response to drought and salinity stresses in sesame. BMC Genomics 20(1):748. https://doi.org/10.1186/s12864-019-6091-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Sasaki K, Ida Y, Kitajima S, Kawazu T, Hibino T, Hanba YT (2019) Overexpressing the HD-Zip class II transcription factor EcHB1 from Eucalyptus camaldulensis increased the leaf photosynthesis and drought tolerance of Eucalyptus. Sci Rep 9(1):14121. https://doi.org/10.1038/s41598-019-50610-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Liu T, Longhurst AD, Talavera-Rauh F, Hokin SA, Barton MK (2016) The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence. eLife 5. https://doi.org/10.7554/eLife.13768

  20. Agalou A, Purwantomo S, Overnäs E, Johannesson H, Zhu X, Estiati A, de Kam RJ, Engström P, Slamet-Loedin IH, Zhu Z et al (2008) A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members. Plant Mol Biol 66(1–2):87–103. https://doi.org/10.1007/s11103-007-9255-7

    Article  CAS  PubMed  Google Scholar 

  21. Tognacca RS, Carabelli M, Morelli G, Ruberti I, Botto JF (2021) ATHB2 is a negative regulator of germination in Arabidopsis thaliana seeds. Sci Rep 11(1):9688. https://doi.org/10.1038/s41598-021-88874-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Gu C, Guo ZH, Cheng HY, Zhou YH, Qi KJ, Wang GM, Zhang SL (2019) A HD-ZIP II HOMEBOX transcription factor, PpHB.G7, mediates ethylene biosynthesis during fruit ripening in peach. Plant Science: Int J Experimental Plant Biology 278:12–19. https://doi.org/10.1016/j.plantsci.2018.10.008

    Article  CAS  Google Scholar 

  23. Tan W, Han Q, Li Y, Yang F, Li J, Li P, Xu X, Lin H, Zhang D (2021) A HAT1-DELLA signaling module regulates trichome initiation and leaf growth by achieving gibberellin homeostasis. New Phytol 231(3):1220–1235. https://doi.org/10.1111/nph.17422

    Article  CAS  PubMed  Google Scholar 

  24. Chen W, Cheng Z, Liu L, Wang M, You X, Wang J, Zhang F, Zhou C, Zhang Z, Zhang H et al (2019) Small grain and dwarf 2, encoding an HD-Zip II family transcription factor, regulates plant development by modulating gibberellin biosynthesis in rice. Plant Science: Int J Experimental Plant Biology 288:110208. https://doi.org/10.1016/j.plantsci.2019.110208

    Article  CAS  Google Scholar 

  25. Qin YF, Li DD, Wu YJ, Liu ZH, Zhang J, Zheng Y, Li XB (2010) Three cotton homeobox genes are preferentially expressed during early seedling development and in response to phytohormone signaling. Plant Cell Rep 29(10):1147–1156. https://doi.org/10.1007/s00299-010-0901-1

    Article  CAS  PubMed  Google Scholar 

  26. Ge XX, Liu Z, Wu XM, Chai LJ, Guo WW (2015) Genome-wide identification, classification and analysis of HD-ZIP gene family in citrus, and its potential roles in somatic embryogenesis regulation. Gene 574(1):61–68. https://doi.org/10.1016/j.gene.2015.07.079

    Article  CAS  PubMed  Google Scholar 

  27. Khianchaikhan K, Aroonluk S, Vuttipongchaikij S, Jantasuriyarat C (2023) Genome-wide identification of Homeodomain Leucine Zipper (HD-ZIP) transcription factor, expression analysis, and Protein Interaction of HD-ZIP IV in oil palm somatic embryogenesis. Int J Mol Sci 24(5). https://doi.org/10.3390/ijms24055000

  28. Liu K, Han X, Liang Z, Yan J, Cong P, Zhang C (2022) Genome-wide identification, classification, and expression analysis of the HD-Zip transcription factor family in Apple (Malus domestica Borkh). Int J Mol Sci 23(5). https://doi.org/10.3390/ijms23052632

  29. Shen W, Li H, Teng R, Wang Y, Wang W, Zhuang J (2019) Genomic and transcriptomic analyses of HD-Zip family transcription factors and their responses to abiotic stress in tea plant (Camellia sinensis). Genomics 111(5):1142–1151. https://doi.org/10.1016/j.ygeno.2018.07.009

    Article  CAS  PubMed  Google Scholar 

  30. Yuan Y, Xu X, Luo Y, Gong Z, Hu X, Wu M, Liu Y, Yan F, Zhang X, Zhang W et al (2021) R2R3 MYB-dependent auxin signalling regulates trichome formation, and increased trichome density confers spider mite tolerance on tomato. Plant Biotechnol J 19(1):138–152. https://doi.org/10.1111/pbi.13448

    Article  CAS  PubMed  Google Scholar 

  31. Zhang H, Ma X, Li W, Niu D, Wang Z, Yan X, Yang X, Yang Y, Cui H (2019) Genome-wide characterization of NtHD-ZIP IV: different roles in abiotic stress response and glandular trichome induction. BMC Plant Biol 19(1):444. https://doi.org/10.1186/s12870-019-2023-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Chen H, Lv J, sun Y (2017) Genome-wide ldentification and expression analysis of the HD-Zip III Gene Family in Nicotiana Tobacum. Genomics Appl Biology 36(08):3034–3041. https://doi.org/10.13417/j.gab.036.003034

    Article  Google Scholar 

  33. Hammond RW, Zhao Y (2009) Modification of tobacco plant development by sense and antisense expression of the tomato viroid-induced AGC VIIIa protein kinase PKV suggests involvement in gibberellin signaling. BMC Plant Biol 9:108. https://doi.org/10.1186/1471-2229-9-108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Schmidt GW, Delaney SK (2010) Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol Genet Genomics: MGG 283(3):233–241. https://doi.org/10.1007/s00438-010-0511-1

    Article  CAS  PubMed  Google Scholar 

  35. Choi YE, Lim S, Kim HJ, Han JY, Lee MH, Yang Y, Kim JA, Kim YS (2012) Tobacco NtLTP1, a glandular-specific lipid transfer protein, is required for lipid secretion from glandular trichomes. Plant Journal: Cell Mol Biology 70(3):480–491. https://doi.org/10.1111/j.1365-313X.2011.04886.x

    Article  CAS  Google Scholar 

  36. Carabelli M, Possenti M, Sessa G, Ruzza V, Morelli G, Ruberti I (2018) Arabidopsis HD-Zip II proteins regulate the exit from proliferation during leaf development in canopy shade. J Exp Bot 69(22):5419–5431. https://doi.org/10.1093/jxb/ery331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Chen S, Ren F, Zhang L, Liu Y, Chen X, Li Y, Zhang L, Zhu B, Zeng P, Li Z et al (2018) Unstable Allotetraploid Tobacco Genome due to frequent Homeologous recombination, segmental deletion, and chromosome loss. Mol Plant 11(7):914–927. https://doi.org/10.1016/j.molp.2018.04.009

    Article  CAS  PubMed  Google Scholar 

  38. Ren M, Zhang Y, Wang R, Liu Y, Li M, Wang X, Chen X, Luan X, Zhang H, Wei H et al (2022) PtrHAT22, as a higher hierarchy regulator, coordinately regulates secondary cell wall component biosynthesis in Populus trichocarpa. Plant Science: Int J Experimental Plant Biology 316:111170. https://doi.org/10.1016/j.plantsci.2021.111170

    Article  CAS  Google Scholar 

  39. Li S, Li X, Wei Z, Liu F (2020) ABA-mediated modulation of elevated CO(2) on stomatal response to drought. Curr Opin Plant Biol 56:174–180. https://doi.org/10.1016/j.pbi.2019.12.002

    Article  CAS  PubMed  Google Scholar 

  40. Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72(4):673–689. https://doi.org/10.1007/s00018-014-1767-0

    Article  CAS  PubMed  Google Scholar 

  41. Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251. https://doi.org/10.1146/annurev.arplant.59.032607.092804

    Article  CAS  PubMed  Google Scholar 

  42. Jiang C, Fu X (2007) GA action: turning on de-DELLA repressing signaling. Curr Opin Plant Biol 10(5):461–465. https://doi.org/10.1016/j.pbi.2007.08.011

    Article  CAS  PubMed  Google Scholar 

  43. Xiushuang W, Peiwen G, Lu H, Jie Y, Zhenli L, Yongjun W (2022) Overexpression of NtHD20 reduces Tobacco glandular trichomes Densit. Mol Plant Breed 20(16):5332–5338. https://doi.org/10.13271/j.mpb.020.005332

    Article  Google Scholar 

Download references

Funding

Engineering Technology Research Center for The Processing of Pepper Products of Guizhou [Qianjiaohe KV (2021) 006], Engineering and Technology Research Center for Pepper Fermented Products of Guizhou [Qiankehe Platform Talent (2020) 2102], Guizhou Provincial Science and Technology Projects [Qian Ke He Zhi Cheng, no. (2021) 262, (2022) 172, (2022) 156, (2023) 455].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Yongjun Wu get funding acquisition for the financial support from funding agencies. Material preparation, data collection and analysis were performed by Lincheng Zhang, Liu Liu, Longhuan Yang and Jiahua Zheng. The first draft of the manuscript was written by Liu Liu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yongjun Wu.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhang, L., Yang, L. et al. Genome-wide characterization and expression analysis of the HD-Zip II gene family in response to drought and GA3 stresses in Nicotiana tabacum. Mol Biol Rep 51, 581 (2024). https://doi.org/10.1007/s11033-024-09527-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09527-0

Keywords

Navigation