Skip to main content

Advertisement

Log in

Molecular tools are crucial for malaria elimination

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The eradication of Plasmodium parasites, responsible for malaria, is a daunting global public health task. It requires a comprehensive approach that addresses symptomatic, asymptomatic, and submicroscopic cases. Overcoming this challenge relies on harnessing the power of molecular diagnostic tools, as traditional methods like microscopy and rapid diagnostic tests fall short in detecting low parasitaemia, contributing to the persistence of malaria transmission. By precisely identifying patients of all types and effectively characterizing malaria parasites, molecular tools may emerge as indispensable allies in the pursuit of malaria elimination. Furthermore, molecular tools can also provide valuable insights into parasite diversity, drug resistance patterns, and transmission dynamics, aiding in the implementation of targeted interventions and surveillance strategies. In this review, we explore the significance of molecular tools in the pursuit of malaria elimination, shedding light on their key contributions and potential impact on public health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. WHO World malaria report 2022 12/01/2023]; https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022

  2. Muppidi P et al (2023) Diagnosis of cerebral malaria: tools to reduce Plasmodium falciparum associated mortality. Front Cell Infect Microbiol 13:1090013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. WHO (2014) Severe malaria. Trop Med Int Health 19(Suppl 1):7–131

  4. Miller LH et al (2002) The pathogenic basis of malaria. Nature 415(6872):673–679

    Article  CAS  PubMed  Google Scholar 

  5. Magallon-Tejada A et al (2016) Cytoadhesion to gC1qR through Plasmodium Falciparum Erythrocyte Membrane Protein 1 in severe Malaria. PLoS Pathog 12(11):e1006011

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gupta H, Wassmer SC (2021) Harnessing the potential of miRNAs in Malaria Diagnostic and Prevention. Front Cell Infect Microbiol 11:793954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martianez-Vendrell X et al (2022) Factors affecting the performance of HRP2-Based Malaria Rapid Diagnostic tests. Trop Med Infect Dis, 7(10)

  8. Galatas B, Bassat Q, Mayor A (2016) Malaria parasites in the Asymptomatic: looking for the Hay in the Haystack. Trends Parasitol 32(4):296–308

    Article  PubMed  Google Scholar 

  9. Chen I et al (2016) Asymptomatic malaria: a chronic and debilitating infection that should be treated. PLoS Med 13(1):e1001942

    Article  PubMed  PubMed Central  Google Scholar 

  10. Naing C et al (2022) Detection of asymptomatic malaria in Asian countries: a meta-analysis of diagnostic accuracy. Malar J 21(1):50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gupta H et al (2018) Drug-resistant polymorphisms and copy numbers in Plasmodium Falciparum, Mozambique, 2015. Emerg Infect Dis 24(1):40–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gupta H et al (2020) Effect of mass dihydroartemisinin-piperaquine administration in southern Mozambique on the carriage of molecular markers of antimalarial resistance. PLoS ONE 15(10):e0240174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gupta H et al (2017) Molecular surveillance of pfhrp2 and pfhrp3 deletions in Plasmodium Falciparum isolates from Mozambique. Malar J 16(1):416

    Article  PubMed  PubMed Central  Google Scholar 

  14. Galatas B et al (2020) Field performance of ultrasensitive and conventional malaria rapid diagnostic tests in southern Mozambique. Malar J 19(1):451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mobegi VA et al (2014) Genome-wide analysis of selection on the malaria parasite Plasmodium Falciparum in West African populations of differing infection endemicity. Mol Biol Evol 31(6):1490–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Simam J et al (2018) Gene copy number variation in natural populations of Plasmodium Falciparum in Eastern Africa. BMC Genomics 19(1):372

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schaffner SF et al (2018) hmmIBD: software to infer pairwise identity by descent between haploid genotypes. Malar J 17(1):196

    Article  PubMed  PubMed Central  Google Scholar 

  18. Spanakos G et al (2018) Genetic spatiotemporal anatomy of Plasmodium Vivax Malaria episodes in Greece, 2009–2013. Emerg Infect Dis 24(3):541–548

    Article  PubMed  PubMed Central  Google Scholar 

  19. Patel JC et al (2014) Genetic evidence of importation of drug-resistant Plasmodium falciparum to Guatemala from the Democratic Republic of the Congo. Emerg Infect Dis 20(6):932–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Daniels RF et al (2020) Evidence for reduced Malaria Parasite Population after Application of Population-Level Antimalarial Drug Strategies in Southern Province, Zambia. Am J Trop Med Hyg 103(2Suppl):66–73

    Article  PubMed  PubMed Central  Google Scholar 

  21. Amir A et al (2018) Diagnostic tools in childhood malaria. Parasit Vectors 11(1):53

    Article  PubMed  PubMed Central  Google Scholar 

  22. Amexo M et al (2004) Malaria misdiagnosis: effects on the poor and vulnerable. Lancet 364(9448):1896–1898

    Article  PubMed  Google Scholar 

  23. Das S et al (2018) Performance of an ultra-sensitive Plasmodium Falciparum HRP2-based rapid diagnostic test with recombinant HRP2, culture parasites, and archived whole blood samples. Malar J 17(1):118

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vernelen K et al (2018) Photo-based External Quality Assessment of Malaria rapid diagnostic tests in a non-endemic setting. PLoS ONE 13(8):e0201622

    Article  PubMed  PubMed Central  Google Scholar 

  25. Roth JM et al (2016) Molecular malaria diagnostics: a systematic review and meta-analysis. Crit Rev Clin Lab Sci 53(2):87–105

    Article  CAS  PubMed  Google Scholar 

  26. Gavina K et al (2017) A sensitive species-specific reverse transcription real-time PCR method for detection of Plasmodium Falciparum and Plasmodium Vivax. Parasite Epidemiol Control 2(2):70–76

    Article  PubMed  PubMed Central  Google Scholar 

  27. Varo R et al (2021) Diagnosis of clinical malaria in endemic settings. Expert Rev Anti Infect Ther 19(1):79–92

    Article  CAS  PubMed  Google Scholar 

  28. Mercereau-Puijalon O, Barale JC, Bischoff E (2002) Three multigene families in Plasmodium parasites: facts and questions. Int J Parasitol 32(11):1323–1344

    Article  CAS  PubMed  Google Scholar 

  29. Steenkeste N et al (2009) Towards high-throughput molecular detection of Plasmodium: new approaches and molecular markers. Malar J 8:86

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lazrek Y et al (2023) Molecular detection of human Plasmodium species using a multiplex real time PCR. Sci Rep 13(1):11388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lucchi NW et al (2010) Real-time fluorescence loop mediated isothermal amplification for the diagnosis of malaria. PLoS ONE 5(10):e13733

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kersting S et al (2014) Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malar J 13:99

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schneider R et al (2021) Validation of a novel FRET real-time PCR assay for simultaneous quantitative detection and discrimination of human Plasmodium parasites. PLoS ONE 16(6):e0252887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mens PF et al (2012) Direct blood PCR in combination with nucleic acid lateral flow immunoassay for detection of Plasmodium species in settings where malaria is endemic. J Clin Microbiol 50(11):3520–3525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Souza SS et al (2018) Photo-Induced Electron transfer real-time PCR for detection of Plasmodium Falciparum plasmepsin 2 Gene Copy Number. Antimicrob Agents Chemother, 62(8)

  36. Cheng Z et al (2015) Capture and Ligation Probe-PCR (CLIP-PCR) for Molecular Screening, with application to active Malaria Surveillance for Elimination. Clin Chem 61(6):821–828

    Article  CAS  PubMed  Google Scholar 

  37. Hofmann N et al (2015) Ultra-sensitive detection of Plasmodium falciparum by amplification of multi-copy subtelomeric targets. PLoS Med 12(3):e1001788

    Article  PubMed  PubMed Central  Google Scholar 

  38. Demas A et al (2011) Applied genomics: data mining reveals species-specific malaria diagnostic targets more sensitive than 18S rRNA. J Clin Microbiol 49(7):2411–2418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lucchi NW et al (2012) A new single-step PCR assay for the detection of the zoonotic malaria parasite Plasmodium Knowlesi. PLoS ONE 7(2):e31848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gupta H et al (2016) New molecular detection methods of malaria parasites with multiple genes from genomes. Acta Trop 160:15–22

    Article  CAS  PubMed  Google Scholar 

  41. Cunningham CH et al (2021) A novel CRISPR-based malaria diagnostic capable of Plasmodium detection, species differentiation, and drug-resistance genotyping. EBioMedicine 68:103415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rao PN et al (2016) A method for Amplicon Deep Sequencing of Drug Resistance Genes in Plasmodium Falciparum Clinical isolates from India. J Clin Microbiol 54(6):1500–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Silva M et al (2022) Plasmodium Falciparum Drug Resistance genes pfmdr1 and pfcrt in vivo Co-expression during artemether-lumefantrine therapy. Front Pharmacol 13:868723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nsanzabana C et al (2018) Tools for surveillance of anti-malarial drug resistance: an assessment of the current landscape. Malar J 17(1):75

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gupta H et al (2015) Categorical complexities of Plasmodium Falciparum malaria in individuals is associated with genetic variations in ADORA2A and GRK5 genes. Infect Genet Evol 34:188–199

    Article  CAS  PubMed  Google Scholar 

  46. da Silva C et al (2023) Targeted and whole-genome sequencing reveal a north-south divide in P. Falciparum drug resistance markers and genetic structure in Mozambique. Commun Biol 6(1):619

    Article  PubMed  PubMed Central  Google Scholar 

  47. Smith-Aguasca R et al (2019) Mosquitoes as a feasible sentinel group for anti-malarial resistance surveillance by Next Generation sequencing of Plasmodium Falciparum. Malar J 18(1):351

    Article  PubMed  PubMed Central  Google Scholar 

  48. Taylor SM et al (2013) Pooled deep sequencing of Plasmodium Falciparum isolates: an efficient and scalable tool to quantify prevailing malaria drug-resistance genotypes. J Infect Dis 208(12):1998–2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Telele NF et al (2018) Pretreatment drug resistance in a large countrywide Ethiopian HIV-1 C cohort: a comparison of Sanger and high-throughput sequencing. Sci Rep 8(1):7556

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gruenberg M et al (2019) Amplicon deep sequencing improves Plasmodium Falciparum genotyping in clinical trials of antimalarial drugs. Sci Rep 9(1):17790

    Article  PubMed  PubMed Central  Google Scholar 

  51. Beckmann JS, Estivill X, Antonarakis SE (2007) Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet 8(8):639–646

    Article  CAS  PubMed  Google Scholar 

  52. McCarroll SA, Altshuler DM (2007) Copy-number variation and association studies of human disease. Nat Genet 39(7 Suppl):S37–42

    Article  CAS  PubMed  Google Scholar 

  53. Cheeseman IH et al (2009) Gene copy number variation throughout the Plasmodium falciparum genome. BMC Genomics 10:353

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gresham D et al (2006) Genome-wide detection of polymorphisms at nucleotide resolution with a single DNA microarray. Science 311(5769):1932–1936

    Article  CAS  PubMed  Google Scholar 

  55. Dharia NV et al (2009) Use of high-density tiling microarrays to identify mutations globally and elucidate mechanisms of drug resistance in Plasmodium Falciparum. Genome Biol 10(2):R21

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cheeseman IH et al (2016) Population structure Shapes Copy Number Variation in Malaria parasites. Mol Biol Evol 33(3):603–620

    Article  CAS  PubMed  Google Scholar 

  57. Kidgell C et al (2006) A systematic map of genetic variation in Plasmodium Falciparum. PLoS Pathog 2(6):e57

    Article  PubMed  PubMed Central  Google Scholar 

  58. Witkowski B et al (2017) A surrogate marker of piperaquine-resistant Plasmodium Falciparum malaria: a phenotype-genotype association study. Lancet Infect Dis 17(2):174–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Amato R et al (2017) Genetic markers associated with dihydroartemisinin-piperaquine failure in Plasmodium Falciparum malaria in Cambodia: a genotype-phenotype association study. Lancet Infect Dis 17(2):164–173

    Article  CAS  PubMed  Google Scholar 

  60. Gil JP, Krishna S (2017) pfmdr1 (Plasmodium Falciparum multidrug drug resistance gene 1): a pivotal factor in malaria resistance to artemisinin combination therapies. Expert Rev Anti Infect Ther 15(6):527–543

    Article  CAS  PubMed  Google Scholar 

  61. Srisutham S et al (2021) Measurement of gene amplifications related to drug resistance in Plasmodium falciparum using droplet digital PCR. Malar J 20(1):120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fassbinder-Orth CA (2014) Methods for quantifying gene expression in ecoimmunology: from qPCR to RNA-Seq. Integr Comp Biol 54(3):396–406

    Article  CAS  PubMed  Google Scholar 

  63. Sepulveda N et al (2018) Global analysis of Plasmodium Falciparum histidine-rich protein-2 (pfhrp2) and pfhrp3 gene deletions using whole-genome sequencing data and meta-analysis. Infect Genet Evol 62:211–219

    Article  CAS  PubMed  Google Scholar 

  64. Beshir KB et al (2017) Plasmodium Falciparum parasites with histidine-rich protein 2 (pfhrp2) and pfhrp3 gene deletions in two endemic regions of Kenya. Sci Rep 7(1):14718

    Article  PubMed  PubMed Central  Google Scholar 

  65. Flannery EL et al (2015) Next-generation sequencing of Plasmodium Vivax patient samples shows evidence of direct evolution in drug-resistance genes. ACS Infect Dis 1(8):367–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Beghain J et al (2016) Plasmodium copy number variation scan: gene copy numbers evaluation in haploid genomes. Malar J 15:206

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sonden K et al (2015) Asymptomatic Multiclonal Plasmodium falciparum infections carried through the dry season Predict Protection against subsequent clinical Malaria. J Infect Dis 212(4):608–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pumpaibool T et al (2009) Genetic diversity and population structure of Plasmodium Falciparum in Thailand, a low transmission country. Malar J 8:155

    Article  PubMed  PubMed Central  Google Scholar 

  69. Meyer CG et al (2002) Genetic diversity of Plasmodium Falciparum: asexual stages. Trop Med Int Health 7(5):395–408

    Article  CAS  PubMed  Google Scholar 

  70. Arnott A, Barry AE, Reeder JC (2012) Understanding the population genetics of Plasmodium Vivax is essential for malaria control and elimination. Malar J 11:14

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ingasia LA et al (2016) Genetic variability and population structure of Plasmodium Falciparum parasite populations from different malaria ecological regions of Kenya. Infect Genet Evol 39:372–380

    Article  PubMed  Google Scholar 

  72. Ghansah A et al (2014) Monitoring parasite diversity for malaria elimination in sub-saharan Africa. Science 345(6202):1297–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mohd Abd Razak MR et al (2016) Genetic diversity of Plasmodium falciparum populations in Malaria Declining Areas of Sabah, East Malaysia. PLoS ONE 11(3):e0152415

    Article  PubMed  PubMed Central  Google Scholar 

  74. Chenet SM et al (2012) Local population structure of Plasmodium: impact on malaria control and elimination. Malar J 11:412

    Article  PubMed  PubMed Central  Google Scholar 

  75. Huijben S et al (2020) Counter-selection of Antimalarial Resistance polymorphisms by intermittent preventive treatment in pregnancy. J Infect Dis 221(2):293–303

    CAS  PubMed  Google Scholar 

  76. Sundararaman SA et al (2013) Plasmodium falciparum-like parasites infecting wild apes in southern Cameroon do not represent a recurrent source of human malaria. Proc Natl Acad Sci U S A 110(17):7020–7025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lin JT et al (2015) Using Amplicon Deep Sequencing To Detect Genetic Signatures of Plasmodium Vivax Relapse. J Infect Dis 212(6):999–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Levitt B et al (2017) Overlap extension barcoding for the Next Generation sequencing and genotyping of Plasmodium Falciparum in Individual patients in Western Kenya. Sci Rep 7:41108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lerch A et al (2017) Development of amplicon deep sequencing markers and data analysis pipeline for genotyping multi-clonal malaria infections. BMC Genomics 18(1):864

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hathaway NJ et al (2018) SeekDeep: single-base resolution de novo clustering for amplicon deep sequencing. Nucleic Acids Res 46(4):e21

    Article  CAS  PubMed  Google Scholar 

  81. Assefa SA et al (2014) estMOI: estimating multiplicity of infection using parasite deep sequencing data. Bioinformatics 30(9):1292–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lerch A et al (2019) Longitudinal tracking and quantification of individual Plasmodium falciparum clones in complex infections. Sci Rep 9(1):3333

    Article  PubMed  PubMed Central  Google Scholar 

  83. Tusting LS et al (2014) Measuring changes in Plasmodium Falciparum transmission: precision, accuracy and costs of metrics. Adv Parasitol 84:151–208

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hay SI, Smith DL, Snow RW (2008) Measuring malaria endemicity from intense to interrupted transmission. Lancet Infect Dis 8(6):369–378

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lyimo BM et al (2022) Potential opportunities and challenges of deploying Next Generation sequencing and CRISPR-Cas systems to Support Diagnostics and Surveillance towards Malaria Control and Elimination in Africa. Front Cell Infect Microbiol 12:757844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nabet C et al (2016) Genetic diversity of Plasmodium Falciparum in human malaria cases in Mali. Malar J 15:353

    Article  PubMed  PubMed Central  Google Scholar 

  87. Pothin E et al (2016) Estimating malaria transmission intensity from Plasmodium Falciparum serological data using antibody density models. Malar J 15:79

    Article  PubMed  PubMed Central  Google Scholar 

  88. Baum E et al (2015) Submicroscopic and asymptomatic Plasmodium falciparum and Plasmodium Vivax infections are common in western Thailand - molecular and serological evidence. Malar J 14:95

    Article  PubMed  PubMed Central  Google Scholar 

  89. Cook J et al (2015) Mass screening and treatment on the basis of results of a Plasmodium falciparum-specific rapid diagnostic test did not reduce malaria incidence in Zanzibar. J Infect Dis 211(9):1476–1483

    Article  CAS  PubMed  Google Scholar 

  90. Cordray MS, Richards-Kortum RR (2012) Emerging nucleic acid-based tests for point-of-care detection of malaria. Am J Trop Med Hyg 87(2):223–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Notomi T et al (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28(12):E63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Polley SD et al (2010) Mitochondrial DNA targets increase sensitivity of malaria detection using loop-mediated isothermal amplification. J Clin Microbiol 48(8):2866–2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mori Y et al (2001) Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun 289(1):150–154

    Article  CAS  PubMed  Google Scholar 

  94. Sirichaisinthop J et al (2011) Evaluation of loop-mediated isothermal amplification (LAMP) for malaria diagnosis in a field setting. Am J Trop Med Hyg 85(4):594–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tao ZY et al (2011) Adaptation of a visualized loop-mediated isothermal amplification technique for field detection of Plasmodium Vivax infection. Parasit Vectors 4:115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tayipto Y et al (2022) Serology for Plasmodium Vivax surveillance: a novel approach to accelerate towards elimination. Parasitol Int 87:102492

    Article  PubMed  Google Scholar 

  97. Fonseca AM et al (2019) VAR2CSA Serology to detect Plasmodium Falciparum transmission patterns in pregnancy. Emerg Infect Dis 25(10):1851–1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kartal L, Mueller I, Longley RJ (2023) Using serological markers for the Surveillance of Plasmodium Vivax Malaria: a scoping review. Pathogens, 12(6)

  99. Morshed MG et al (2007) Molecular methods used in clinical laboratory: prospects and pitfalls. FEMS Immunol Med Microbiol 49(2):184–191

    Article  CAS  PubMed  Google Scholar 

  100. Akoniyon OP et al (2022) Whole genome sequencing contributions and challenges in Disease Reduction focused on Malaria. Biology (Basel), 11(4)

Download references

Funding

This work was supported by the Science and Engineering Research Board (SERB), India, under Award Number SRG/2022/000705 (HG). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funders.

Author information

Authors and Affiliations

Authors

Contributions

HG and KS conceived the idea. SS, IG, and HG collected the literature. HG and SS generated the first draft of the study. HG, IG, and KS critically reviewed the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Himanshu Gupta.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, H., Sharma, S., Gilyazova, I. et al. Molecular tools are crucial for malaria elimination. Mol Biol Rep 51, 555 (2024). https://doi.org/10.1007/s11033-024-09496-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09496-4

Keywords

Navigation