Skip to main content
Log in

Bovine lactoferrin inhibits inflammatory response and apoptosis in lipopolysaccharide-induced acute lung injury by targeting the PPAR-γ pathway

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Lactoferrin (LF) is an iron-binding multifunctional cationic glycoprotein. Previous studies have demonstrated that LF may be a potential drug for treating acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In this study, we explored the anti-inflammatory effect and mechanism of bovine lactoferrin (bLF) in ALI using the RNA sequencing (RNA-seq) technology and transcriptome analysis.

Methods and results

Based on the differentially expressed genes (DEGs) obtained from RNA-seq of the Lung from mouse model, the bioinformatics workflow was implemented using the BGISEQ-500 platform. The protein–protein interaction (PPI) network was obtained using STRING, and the hub gene was screened using Cytoscape. To verify the results of transcriptome analysis, the effects of bLF on Lipopolysaccharide (LPS)-induced BEAS-2B cells and its anti-reactive oxygen species (ROS), anti-inflammatory, and antiapoptotic effects were studied via Cell Counting Kit-8 (CCK-8) test, active oxygen detection test, ELISA, and western blot assay.

Transcriptome analysis revealed that two hub gene modules of DEGs were screened via PPI analysis using the STRING and MCODE plug-ins of Cytoscape. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that these core modules are enriched in the PPAR (peroxisome proliferator-activated receptor) and AMPK (AMP-activated protein kinase) signaling pathways. Through cell experiments, our study shows that bLF can inhibit ROS, inflammatory reaction, and LPS-induced BEAS-2B cell apoptosis, which are significantly antagonized by the PPAR-γ inhibitor GW9662.

Conclusion

This study has suggested that the PPAR-γ pathway is the critical target of bLF in anti-inflammatory reactions and apoptosis of ALI, which provides a direction for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The mRNA Sequence data that support the findings of this study have been deposited in the Gene Expression Omnibus with the GSE numbe GSE247266.

References

  1. Bos LDJ, Ware LB (2022) Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes. Lancet 400:1145–1156. https://doi.org/10.1016/S0140-6736(22)01485-4

    Article  PubMed  Google Scholar 

  2. Thompson BT, Chambers RC, Liu KD (2017) Acute respiratory distress syndrome. N Engl J Med 377:562–572. https://doi.org/10.1056/NEJMra1608077

    Article  CAS  PubMed  Google Scholar 

  3. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, Ranieri M, Rubenfeld G, Thompson BT, Wrigge H, Slutsky AS, Pesenti A, LUNG SAFE Investigators; ESICM Trials Group (2016) Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315:788–800. https://doi.org/10.1001/jama.2016.0291

    Article  CAS  PubMed  Google Scholar 

  4. Meyer NJ, Gattinoni L, Calfee CS (2021) Acute respiratory distress syndrome. Lancet 398:622–637. https://doi.org/10.1016/S0140-6736(21)00439-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lepanto MS, Rosa L, Paesano R, Valenti P, Cutone A (2019) Lactoferrin in aseptic and septic inflammation. Molecules 24(7):1323. https://doi.org/10.3390/molecules24071323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zarzosa-Moreno D, Avalos-Gómez C, Ramírez-Texcalco LS, Torres-López E, Ramírez-Mondragón R, Hernández-Ramírez JO, Serrano-Luna J, de la Garza M (2020) Lactoferrin and its derived peptides: an alternative for combating virulence mechanisms developed by pathogens. Molecules 25(24):5763. https://doi.org/10.3390/molecules25245763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kruzel ML, Zimecki M, Actor JK (2017) Lactoferrin in a context of inflammation-induced pathology. Front Immunol 8:1438. https://doi.org/10.3389/fimmu.2017.01438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Actor JK, Hwang SA, Kruzel ML (2009) Lactoferrin as a natural immune modulator. Curr Pharm Des 15:1956–1973. https://doi.org/10.2174/138161209788453202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li XJ, Liu DP, Chen HL, Pan XH, Kong QY, Pang QF (2012) Lactoferrin protects against lipopolysaccharide-induced acute lung injury in mice. Int Immunopharmacol 12:460–464. https://doi.org/10.1016/j.intimp.2012.01.001

    Article  CAS  PubMed  Google Scholar 

  10. Li HY, Yang HG, Wu HM, Yao QQ, Zhang ZY, Meng QS, Fan LL, Wang JQ, Zheng N (2021) Inhibitory effects of lactoferrin on pulmonary inflammatory processes induced by lipopolysaccharide by modulating the TLR4-related pathway. J Dairy Sci 104:7383–7392. https://doi.org/10.3168/jds.2020-19232

    Article  CAS  PubMed  Google Scholar 

  11. National Research Council Committee for the Update of the Guide for the Care and Use of Laboratory Animals (2011) The National Academies Collection: reports funded by National Institutes of Health. Guide for the Care and Use of Laboratory Animals. National Academies Press (US), Washington, DC

    Google Scholar 

  12. Zhou J, Yu Y, Ding L, Xu P, Wang Y (2021) Matcha green tea alleviates non-alcoholic fatty liver disease in high-fat diet-induced obese mice by regulating lipid metabolism and inflammatory responses. Nutrients 13:1950. https://doi.org/10.3390/nu13061950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fan E, Brodie D, Slutsky AS (2018) Acute respiratory distress syndrome: advances in diagnosis and treatment. JAMA 319:698–710. https://doi.org/10.1001/jama.2017.21907

    Article  PubMed  Google Scholar 

  14. Han N, Li H, Li G, Shen Y, Fei M, Nan Y (2019) Effect of bovine lactoferrin as a novel therapeutic agent in a rat model of sepsis-induced acute lung injury. AMB Express 9:177. https://doi.org/10.1186/s13568-019-0900-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zimecki M, Actor JK, Kruzel ML (2021) The potential for Lactoferrin to reduce SARS-CoV-2 induced cytokine storm. Int Immunopharmacol 95:107571. https://doi.org/10.1016/j.intimp.2021.107571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rosa L, Cutone A, Conte MP, Campione E, Bianchi L, Valenti P (2022) An overview on in vitro and in vivo antiviral activity of lactoferrin: its efficacy against SARS-CoV-2 infection. Biometals 36:417–436. https://doi.org/10.1007/s10534-022-00427-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Newton K, Dixit VM (2012) Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 4:a006049. https://doi.org/10.1101/cshperspect.a006049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG (2011) The pathogenesis of sepsis. Annu Rev Pathol 6:19–48. https://doi.org/10.1146/annurev-pathol-011110-130327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu H, Yu X, Yu S, Kou J (2015) Molecular mechanisms in lipopolysaccharide-induced pulmonary endothelial barrier dysfunction. Int Immunopharmacol 29:937–946. https://doi.org/10.1016/j.intimp.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  20. Li J, Wang F, Xia Y, Dai W, Chen K, Li S, Liu T, Zheng Y, Wang J, Lu W, Zhou Y, Yin Q, Lu J, Zhou Y, Guo C (2015) Astaxanthin pretreatment attenuates hepatic ischemia reperfusion-induced apoptosis and autophagy via the ROS/MAPK pathway in mice. Mar Drugs 13:3368–3387. https://doi.org/10.3390/md13063368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao Y-Y, Sun S, Sursal T, Adibnia Y, Zhao C, Zheng Y, Li H, Otterbein LE, Hauser CJ, Itagaki K (2013) Mitochondrial DAMPs increase endothelial permeability through neutrophil dependent and independent pathways. PLoS ONE 8:e59989. https://doi.org/10.1371/journal.pone.0059989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kruzel ML, Actor JK, Radak Z, Bacsi A, Saavedra-Molina A, Boldogh I (2009) Lactoferrin decreases LPS-induced mitochondrial dysfunction in cultured cells and in animal endotoxemia model. Innate Immun 16:67–79. https://doi.org/10.1177/1753425909105317

    Article  PubMed  Google Scholar 

  23. Hu P, Zhao F, Wang J, Zhu W (2020) Lactoferrin attenuates lipopolysaccharide-stimulated inflammatory responses and barrier impairment through the modulation of NF-kappaB/MAPK/Nrf2 pathways in IPEC-J2 cells. Food Funct 11:8516–8526. https://doi.org/10.1039/d0fo01570a

    Article  CAS  PubMed  Google Scholar 

  24. Abdel Baky NA, Al-Najjar AH, Elariny HA, Sallam AS, Mohammed AA (2022) Pramipexole and Lactoferrin ameliorate cyclophosphamide-Induced haemorrhagic cystitis via targeting Sphk1/S1P/MAPK, TLR-4/NF-kappaB, and NLRP3/caspase-1/IL-1beta signalling pathways and modulating the Nrf2/HO-1 pathway. Int Immunopharmacol 112:109282. https://doi.org/10.1016/j.intimp.2022.109282

    Article  CAS  PubMed  Google Scholar 

  25. Berger J, Moller DE (2002) The mechanisms of action of PPARs. Annu Rev Med 53:409–435. https://doi.org/10.1146/annurev.med.53.082901.104018

    Article  CAS  PubMed  Google Scholar 

  26. Herzig S, Shaw RJ (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19:121–135. https://doi.org/10.1038/nrm.2017.95

    Article  CAS  PubMed  Google Scholar 

  27. Griffiths HR, Gao D, Pararasa C (2017) Redox regulation in metabolic programming and inflammation. Redox Biol 12:50–57. https://doi.org/10.1016/j.redox.2017.01.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun B, Lei M, Zhang J, Kang H, Liu H, Zhou F (2023) Acute lung injury caused by sepsis: how does it happen? Front Med 10:1289194. https://doi.org/10.3389/fmed.2023.1289194

    Article  Google Scholar 

  29. Delano MJ, Ward PA (2016) The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol Rev 274:330–353. https://doi.org/10.1111/imr.12499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen J, Wei H (2021) Immune intervention in sepsis. Front Pharmacol 12:718089. https://doi.org/10.3389/fphar.2021.718089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cristofaro P, Opal SM (2005) The Toll-like receptors and their role in septic shock. Expert Opin Ther Targets 7:603–612. https://doi.org/10.1517/14728222.7.5.603

    Article  Google Scholar 

  32. Kumar V (2020) Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol 89:107087. https://doi.org/10.1016/j.intimp.2020.107087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang L, Zhang G, Sun W, Zhang Y, Tian Y, Yang X, Liu Y (2023) Comprehensive analysis of immune cell landscapes revealed that immune cell ratio eosinophil/B.cell.memory is predictive of survival in sepsis. Eur J Med Res 28:565. https://doi.org/10.1186/s40001-023-01506-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Suzuki YA, Lopez V, Lonnerdal B (2005) Mammalian lactoferrin receptors: structure and function. Cell Mol Life Sci 62:2560–2575. https://doi.org/10.1007/s00018-005-5371-1

    Article  CAS  PubMed  Google Scholar 

  35. Puddu P, Valenti P, Gessani S (2009) Immunomodulatory effects of lactoferrin on antigen presenting cells. Biochimie 91:11–18. https://doi.org/10.1016/j.biochi.2008.05.005

    Article  CAS  PubMed  Google Scholar 

  36. Legrand D (2012) Lactoferrin, a key molecule in immune and inflammatory. Biochem Cell Biol 90:252–268. https://doi.org/10.1139/o11-056

    Article  CAS  PubMed  Google Scholar 

  37. Siqueiros-Cendon T, Arevalo-Gallegos S, Iglesias-Figueroa BF, Garcia-Montoya IA, Salazar-Martinez J, Rascon-Cruz Q (2014) Immunomodulatory effects of lactoferrin. Acta Pharmacol Sin 35:557–566. https://doi.org/10.1038/aps.2013.200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Francis N, Wong SH, Hampson P, Wang K, Young SP, Deigner HP, Salmon M, Scheel-Toellner D, Lord JM (2011) Lactoferrin inhibits neutrophil apoptosis via blockade of proximal apoptotic signaling events. Biochim Biophys Acta Mol Cell Res 1813:1822–1826. https://doi.org/10.1016/j.bbamcr.2011.07.004

    Article  CAS  Google Scholar 

  39. Necela BM, Su W, Thompson EA (2008) Toll-like receptor 4 mediates cross-talk between peroxisome proliferator-activated receptor γ and nuclear factor-κB in macrophages. Immunology 125:344–358. https://doi.org/10.1111/j.1365-2567.2008.02849.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ferreira AE, Sisti F, Sonego F, Wang S, Filgueiras LR, Brandt S, Serezani AP, Du H, Cunha FQ, Alves-Filho JC, Serezani CH (2014) PPAR-gamma/IL-10 axis inhibits MyD88 expression and ameliorates murine polymicrobial sepsis. J Immunol 192:2357–2365. https://doi.org/10.4049/jimmunol.1302375

    Article  CAS  PubMed  Google Scholar 

  41. Li Q, Sun M, Zhou Q, Li Y, Xu J, Fan H (2023) Integrated analysis of multi-omics data reveals T cell exhaustion in sepsis. Front Immunol 14:1110070. https://doi.org/10.3389/fimmu.2023.1110070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mohamed WA, Schaalan MF (2018) Antidiabetic efficacy of lactoferrin in type 2 diabetic pediatrics; controlling impact on PPAR-gamma, SIRT-1, and TLR4 downstream signaling pathway. Diabetol Metab Syndr 10:89. https://doi.org/10.1186/s13098-018-0390-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fan LL, Yao QQ, Wu HM, Wen F, Wang JQ, Li HY, Zheng N (2022) Protective effects of recombinant lactoferrin with different iron saturations on enteritis injury in young mice. J Dairy Sci 105:4791–4803. https://doi.org/10.3168/jds.2021-21428

    Article  CAS  PubMed  Google Scholar 

  44. Wu H, Fan L, Gao Y, Wang J, Zheng N (2022) The protective effects of iron free lactoferrin on lipopolysaccharide-induced intestinal inflammatory injury via modulating the NF-κB/PPAR signaling pathway. Foods 11:3378. https://doi.org/10.3390/foods11213378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financially supported by the Mandatory subject of Hebei Provincial Administration of Traditional Chinese Medicine [No.: 2021027].

Author information

Authors and Affiliations

Authors

Contributions

YL and ZC contributed to the study design and material preparation. JL and YD performed the experiments. WC performed the statistical analysis. YL drafted the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Zhigang Cai.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical approval

All mouse experiments were approved by the Experimental Ethics Committee of Hebei University of Chinese Medicine (Numbering: DWLL2019023).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, J., Dong, Y. et al. Bovine lactoferrin inhibits inflammatory response and apoptosis in lipopolysaccharide-induced acute lung injury by targeting the PPAR-γ pathway. Mol Biol Rep 51, 492 (2024). https://doi.org/10.1007/s11033-024-09436-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09436-2

Keywords

Navigation