Skip to main content
Log in

Genetic enhancement of reproductive stage drought tolerance in RPHR-1005R and derivative rice hybrids through marker-assisted backcross breeding in rice (Oryza sativa L.)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Drought stress is considered as one of the major production constraints in rice. RPHR-1005R is a restorer line (R-Line) with a popular, medium-slender grain type, and is the male parent of the popular Indian rice hybrid, DRR-H3. However, both the hybrid and its restorer are highly vulnerable to the drought stress, which limits the adoption of the hybrid. Therefore, the selection of the restorer line RPHR-1005R has been made with the objective of enhancing drought tolerance.

Methods and results

In this study, we have introgressed a major QTL for grain yield under drought (qDTY 1.1) from Nagina22 through a marker-assisted backcross breeding (MABB) strategy. PCR based SSR markers linked to grain yield under drought (qDTY1.1 - RM431, RM11943), fertility restorer genes (Rf3-DRRM-Rf3-10, Rf4-RM6100) and wide compatibility (S5n allele) were deployed for foreground selection. At BC2F1, a single plant (RPHR6339-4-16-14) with target QTL in heterozygous condition and with the highest recurrent parent genome recovery (85.41%) and phenotypically like RPHR-1005R was identified and selfed to generate BC2F2. Fifty-eight homozygous lines were advanced to BC2F4 and six promising restorer lines and a hybrid combination (APMS6A/RPHR6339-4-16-14-3) were identified.

Conclusions

In summary, the six improved restorer lines could be employed for developing heterotic hybrids possessing reproductive stage drought tolerance. The hybrid combination (APMS6A/RPHR6339-4-16-14-3) was estimated to ensure stable yields in drought-prone irrigated lowlands as well as in directly seeded aerobic and upland areas of India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data supporting the findings of this study are available within the paper and its Supplementary Information. It is also available from the corresponding author upon reasonable request.

References

  1. Palanisami K, Kakumanu KR, Nagothu US, Ranganathan CR (2019) Climate change and agriculture in India. India Studies in Business and Economics 1–6. https://doi.org/10.1007/978-981-13-8363-2_1

  2. Shamsudin NAA, Swamy BPM, Ratnam W et al (2016) Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC Genet 17:1–14. https://doi.org/10.1186/S12863-016-0334-0/TABLES/4

    Article  Google Scholar 

  3. Dixit S, Singh A, Sandhu N et al (2017) Combining drought and submergence tolerance in rice: marker-assisted breeding and QTL combination effects. Mol Breed 37:1–12. https://doi.org/10.1007/s11032-017-0737-2

    Article  Google Scholar 

  4. Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P, Dubash NK (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change p. 151. Ipcc

  5. Lesk C, Rowhani P (2016) Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nat 5297584(529):84–87. https://doi.org/10.1038/nature16467

    Article  CAS  Google Scholar 

  6. Senguttuvel P, Jaldhani V, Raju NS et al (2022) Breeding rice for heat tolerance and climate change scenario; possibilities and way forward. A review. Arch Agron Soil Sci 68:115–132. https://doi.org/10.1080/03650340.2020.1826041

    Article  CAS  Google Scholar 

  7. Jaldhani V, Sanjeeva Rao D, Beulah P et al (2022) Drought and heat stress combination in a changing climate. Clim Change Crop Stress. https://doi.org/10.1016/B978-0-12-816091-6.00002-X

    Article  Google Scholar 

  8. Muthu V, Abbai R, Nallathambi J et al (2020) Pyramiding QTLs controlling tolerance against drought, salinity, and submergence in rice through marker assisted breeding. PLoS ONE 15:e0227421. https://doi.org/10.1371/JOURNAL.PONE.0227421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jaldhani V, Senguttuvel P, Srikanth B et al (2021) Present Status and Future Prospects of Drought Tolerance in Rice. Cereal Grains. https://doi.org/10.5772/INTECHOPEN.97461

    Article  Google Scholar 

  10. Spielman DJ, Kolady DE, Ward PS (2013) The prospects for hybrid rice in India. Food Secur 5:651–665. https://doi.org/10.1007/s12571-013-0291-7

    Article  Google Scholar 

  11. Virmani SS, Kumar I (2004) Development and use of hybrid rice technology to increase rice productivity in the tropics. Irrn 29:10–20

    Google Scholar 

  12. Serraj R, Kumar A, McNally KL et al (2009) Chater 2 Improvement of Drought Resistance in Rice. Adv Agron 103:41–99. https://doi.org/10.1016/S0065-2113(09)03002-8

    Article  CAS  Google Scholar 

  13. Villa J, Villa JE, Henry A et al (2011) Hybrid rice performance in environments of increasing drought severity complexity of traits during severe drought View project Strategic Forsight (ISPC): global food systems-threats and opportunities view project hybrid rice performance in environments of increasing drought severity. F Crop Res 125:14–24. https://doi.org/10.1016/j.fcr.2011.08.009

    Article  Google Scholar 

  14. Senguttuvel P, Sravanraju N, Jaldhani V et al (2021) Evaluation of genotype by environment interaction and adaptability in lowland irrigated rice hybrids for grain yield under high temperature. Sci Reports 111(11):1–13. https://doi.org/10.1038/s41598-021-95264-4

    Article  CAS  Google Scholar 

  15. Anusha G, Rao DS, Jaldhani V et al (2021) Grain Fe and Zn content, heterosis, combining ability and its association with grain yield in irrigated and aerobic rice. Sci Reports 111(11):1–12. https://doi.org/10.1038/s41598-021-90038-4

    Article  CAS  Google Scholar 

  16. Atlin GN, Venuprasad R, Bernier J et al (2009) Rice germplasm development for drought-prone environments: progress made in breeding and genetic analysis at the International Rice Research Institute. Drought Front Rice. https://doi.org/10.1142/9789814280013_0003

    Article  Google Scholar 

  17. Dash AK, Rao RN, Rao GJN et al (2016) Phenotypic and marker-assisted genetic enhancement of parental lines of Rajalaxmi, an elite rice hybrid. Front Plant Sci 7:1005. https://doi.org/10.3389/FPLS.2016.01005/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ramalingam J, Savitha P, Alagarasan G et al (2017) Functional marker assisted improvement of stable cytoplasmic male sterile lines of rice for bacterial blight resistance Front. Plant Sci 8:1131. https://doi.org/10.3389/FPLS.2017.01131

    Article  Google Scholar 

  19. Abhilash Kumar V, Balachiranjeevi CH, Bhaskar Naik S et al (2017) Marker-assisted pyramiding of bacterial blight and gall midge resistance genes into RPHR-1005, the restorer line of the popular rice hybrid DRRH-3. Mol Breed. https://doi.org/10.1007/s11032-017-0687-8

    Article  Google Scholar 

  20. Balachiranjeevi CH, Bhaskar Naik S, Abhilash Kumar V et al (2018) Marker-assisted pyramiding of two major, broad-spectrum bacterial blight resistance genes, Xa21 and Xa33 into an elite maintainer line of rice, DRR17B. PLoS ONE 13:e0201271. https://doi.org/10.1371/JOURNAL.PONE.0201271

    Article  Google Scholar 

  21. Yugander A, Sundaram RM, Singh K et al (2018) Improved versions of rice maintainer line, APMS 6B, possessing two resistance genes, Xa21 and Xa38, exhibit high level of resistance to bacterial blight disease. Mol Breed 38:1–14. https://doi.org/10.1007/S11032-018-0853-7/TABLES/2

    Article  CAS  Google Scholar 

  22. Singh AK, Ponnuswamy R, Srinivas Prasad M et al (2023) Improving blast resistance of maintainer line DRR 9B by transferring broad spectrum resistance gene Pi2 by marker assisted selection in rice. Physiol Mol Biol Plants 29:253–262. https://doi.org/10.1007/S12298-023-01291-Y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kavitha G, Sekhar R, Sundaram RM, Seshu Madhav M, Beulah PNP, Mohan Reddy D, Reddy VLN, Kalyani MB, Sudhakar PSP (2022) Marker assisted backcross breeding to develop the drought tolerant version of IR58025B, a popular maintainer line of hybrid rice. Oryza 59:418–429. https://doi.org/10.35709/ORY.2022.59.4.4

    Article  Google Scholar 

  24. Nagaraju P, Beulah P, Manasa Y, Jaldhani V, Madhusudan N, Sundaram RM, Hari Prasad AS, Revathi P, Kemparaju KB, Sruthi K, Srinivas A, Prashant S, Someswar Rao S, Sheshu Madhav MSP (2021) Evaluation of Improved drought-tolerant parental lines of KMR3R for fertility restoration by molecular analysis. J Rice Res. https://doi.org/10.58297/PUQW2548

    Article  Google Scholar 

  25. Jaldhani V, Rao DS, Beulah P et al (2021) Assessment of Heat-tolerance Potential in QTL Introgressed Lines of Hybrid Rice Restorer, KMR-3R through PS-II Efficiency. Int J Environ Clim Change. https://doi.org/10.9734/IJECC/2021/V11I1130540

    Article  Google Scholar 

  26. Jaldhani V, Neeraja CN, Rao DS et al (2021) Grain and cooking quality analysis in heat-tolerant QTL introgressed restorer of hybrid rice. J Rice Res. https://doi.org/10.58297/nlkf4275

    Article  Google Scholar 

  27. Thippani S, Kumar SS, Senguttuvel P et al (2023) Marker assisted introgression of saltol QTL into “APMS 6B” to enhance salt tolerance at seedling stage of rice (Oryza sativa L.). Int J Plant Soil Sci 35:1074–1082. https://doi.org/10.9734/IJPSS/2023/V35I193645

    Article  Google Scholar 

  28. Beulah P, Manasa Y, Nagaraju P, Veerendra J, Lohit R, Madhusudan N, Bhargava K, Revathi P, Kemparaju KB, Sruthi K, Hari Prasad AS, Sundaram RM, Ravindra Babu V, Krishna Satya A, Sudhakar PSP (2023) Evaluation of salinity-tolerant Backcrossed Inbre Lines (BILs) for fertility restoration using molecula markers. J Rice Res. https://doi.org/10.58297/RQVQ6630

    Article  Google Scholar 

  29. Madhusudan N, Beulah P, Jaldhani V et al (2022) Stacking of Pup1 QTL for low soil phosphorus tolerance and bacterial blight resistance genes in the background of APMS6B, the maintainer line of rice hybrid DRRH-3. Euphytica 218:1–15. https://doi.org/10.1007/S10681-022-02987-0/TABLES/3

    Article  Google Scholar 

  30. Venuprasad R, Dalid CO, Del Valle M et al (2009) Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theor Appl Genet 120:177–190. https://doi.org/10.1007/S00122-009-1168-1/TABLES/6

    Article  PubMed  Google Scholar 

  31. Vikram P, Swamy BPM, Dixit S et al (2011) QDTY1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genet 12:1–15. https://doi.org/10.1186/1471-2156-12-89/TABLES/6

    Article  Google Scholar 

  32. Kumar A, Dixit S, Ram T et al (2014) Breeding high-yielding drought-tolerant rice: genetic variations and conventional and molecular approaches. J Exp Bot 65:6265–6278. https://doi.org/10.1093/JXB/ERU363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ghimire KH, Quiatchon LA, Vikram P et al (2012) Identification and mapping of a QTL (qDTY1.1) with a consistent effect on grain yield under drought. F Crop Res 131:88–96. https://doi.org/10.1016/J.FCR.2012.02.028

    Article  Google Scholar 

  34. Mallikarjuna Swamy BP, Kaladhar K, Reddy GA et al (2014) Mapping and introgression of QTL for yield and related traits in two backcross populations derived from Oryza sativa cv. Swarna and two accessions of O. nivara. J Genet 93:643–654. https://doi.org/10.1007/s12041-014-0420-x

    Article  Google Scholar 

  35. Singh R, Singh Y, Xalaxo S et al (2016) From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Sci 242:278–287. https://doi.org/10.1016/J.PLANTSCI.2015.08.008

    Article  CAS  PubMed  Google Scholar 

  36. Sandhu N, Dixit S, Swamy BPM et al (2019) Marker assisted breeding to develop multiple stress tolerant varieties for flood and drought prone areas. Rice 12:1–16. https://doi.org/10.1186/S12284-019-0269-Y/FIGURES/5

    Article  Google Scholar 

  37. Vikram P, Swamy BPM, Dixit S et al (2016) Linkages and Interactions Analysis of Major Effect Drought Grain Yield QTLs in Rice. PLoS ONE 11:e0151532. https://doi.org/10.1371/JOURNAL.PONE.0151532

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sundaram RM, Sakthivel K, Hariprasad AS, Ramesha MS, Viraktamath BC, Neeraja CN, Balachandran SM, Shobha Rani N, Revathi P, Sandhya P, Hari Y (2010) Development and validation of a PCR-based functional marker system for the major wide-compatible gene locus S5 in rice. Mol Breed 26:719–727. https://doi.org/10.1007/S11032-010-9482-5

    Article  CAS  Google Scholar 

  39. Baisakh N, Yabes J, Gutierrez A et al (2020) Genetic mapping identifies consistent quantitative trait loci for yield traits of rice under greenhouse drought conditions. Genes 11:62. https://doi.org/10.3390/GENES11010062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hospital F, Charcosset A (1997) Marker-assisted introgression of quantitative trait loci. Genetics 147:1469–1485. https://doi.org/10.1093/GENETICS/147.3.1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zheng KL, Huang N, Bennett J, Khush GS (1995) PCR-based marker-assisted selection in rice breeding. IRRI Discussion Paper Series (Philippines), (12)

  42. Sundaram RM, Vishnupriya MR, Biradar SK et al (2008) Marker assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. Euphytica 160:411–422. https://doi.org/10.1007/S10681-007-9564-6/TABLES/6

    Article  Google Scholar 

  43. SES I, (2002) Standard evaluation system. International Rice Research Institute, Manila, p 21

    Google Scholar 

  44. Khatun S, Flowers TJ (1995) The estimation of pollen viability in rice. J Exp Bot 46:151–154. https://doi.org/10.1093/JXB/46.1.151

    Article  CAS  Google Scholar 

  45. Naghavi MR, Aboughadareh AP, Khalili M (2013) Evaluation of Drought Tolerance Indices for Screening Some of Corn (Zea mays L.) Cultivars under Environmental Conditions. Not Sci Biol 5:388–393. https://doi.org/10.15835/NSB539049

    Article  Google Scholar 

  46. Ali MB, El-Sadek AN, Bhukya JN et al (2020) Evaluation of drought tolerance indices for wheat (Triticum aestivum L.) under irrigated and rainfed conditions. Commun Biometry Crop Sci 11:77–89. https://doi.org/10.1111/pbr.12865

    Article  CAS  Google Scholar 

  47. Khan IM, Dhurve OP (2016) Drought response indices for identification of drought tolerant genotypes in rainfed upland rice (Oryza sativa L.). Int J Sci Environ Technol 5:73–83

    Google Scholar 

  48. Nagaraju P, Beulah P, Jaldhani V et al (2023) Assessment of reproductive stage drought tolerance using stress indices in improved restorer lines of KMR-3R in rice. Cereal Res Commun 51:715–728. https://doi.org/10.1007/s42976-022-00334-6

    Article  CAS  Google Scholar 

  49. Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. John Wiley Sons Inc, New York, p 680

  50. Zhang DD, Brecke P, Lee HF et al (2007) Global climate change, war, and population decline in recent human history. Proc Natl Acad Sci U S A 104:19214–19219. https://doi.org/10.1073/PNAS.0703073104/SUPPL_FILE/03073FIG6.PDF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pandey S, Bhandari HS, Hardy B (2007) Economic costs of drought and rice farmers’ coping mechanisms. A Cross-Country Comparative Analysis (International Rice Research Institute).

  52. Collard BCY, Jahufer MZZ, Brouwer JB (2005) Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 1421(142):169–196. https://doi.org/10.1007/S10681-005-1681-5

    Article  Google Scholar 

  53. Singh VK, Singh A, Singh SP et al (2013) Marker-assisted simultaneous but stepwise backcross breeding for pyramiding blast resistance genes Piz5 and Pi54 into an elite Basmati rice restorer line ‘PRR78.’ Plant Breed 132:486–495. https://doi.org/10.1111/PBR.12077

    Article  CAS  Google Scholar 

  54. Hari Y, Srinivasarao K, Viraktamath BC et al (2011) Marker-assisted improvement of a stable restorer line, KMR-3R and its derived hybrid KRH2 for bacterial blight resistance and grain quality. Plant Breed 130:608–616. https://doi.org/10.1111/J.1439-0523.2011.01881.X

    Article  CAS  Google Scholar 

  55. Hari Y, Srinivasarao K, Viraktamath BC et al (2013) Marker-assisted introgression of bacterial blight and blast resistance into IR 58025B, an elite maintainer line of rice. Plant Breed 132:586–594. https://doi.org/10.1111/pbr.12056

    Article  CAS  Google Scholar 

  56. Price A (1999) Courtois B (1999) Mapping QTLs associated with drought resistance in rice: progress, problems and prospects. Plant Growth Regul 291(29):123–133. https://doi.org/10.1023/A:1006255832479

    Article  Google Scholar 

  57. Kumar A, Sandhu N, Dixit S et al (2018) Marker-assisted selection strategy to pyramid two or more QTLs for quantitative trait-grain yield under drought. Rice 11:1–16. https://doi.org/10.1186/S12284-018-0227-0/FIGURES/2

    Article  Google Scholar 

  58. Dixit S, Singh UM, Singh AK et al (2020) Marker assisted forward breeding to combine multiple biotic-abiotic stress resistance/tolerance in rice. Rice 13:29–29. https://doi.org/10.1186/s12284-020-00391-7

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dar MH, Waza SA, Shukla S et al (2020) Drought tolerant rice for ensuring food security in eastern India. Sustainability 12:2214. https://doi.org/10.3390/SU12062214

    Article  Google Scholar 

  60. Sheeba NK, Viraktamath BC, Sivaramakrishnan S et al (2009) Validation of molecular markers linked to fertility restorer gene(s) for WA-CMS lines of rice. Euphytica 167:217–227. https://doi.org/10.1007/S10681-008-9865-4/FIGURES/4

    Article  CAS  Google Scholar 

  61. Vikram P, Swamy BPM, Dixit S et al (2015) Drought susceptibility of modern rice varieties: an effect of linkage of drought tolerance with undesirable traits. Sci Reports 51(5):1–18. https://doi.org/10.1038/srep14799

    Article  CAS  Google Scholar 

  62. Basavaraj SH, Singh VK, Singh A et al (2010) Marker-assisted improvement of bacterial blight resistance in parental lines of Pusa RH10, a superfine grain aromatic rice hybrid. Mol Breed 262(26):293–305. https://doi.org/10.1007/S11032-010-9407-3

    Article  Google Scholar 

  63. Venuprasad R, Bool ME, Quiatchon L et al (2012) A large-effect QTL for rice grain yield under upland drought stress on chromosome 1. Mol Breed 30:535–547. https://doi.org/10.1007/S11032-011-9642-2/TABLES/5

    Article  Google Scholar 

  64. Abhilash Kumar V, Balachiranjeevi CH, Bhaskar Naik S et al (2017) Marker-assisted pyramiding of bacterial blight and gall midge resistance genes into RPHR-1005, the restorer line of the popular rice hybrid DRRH-3. Mol Breed 37:1–14. https://doi.org/10.1007/S11032-017-0687-8/TABLES/3

    Article  CAS  Google Scholar 

  65. Ouyang YD, Chen JJ, Ding JH (2009) Zhang QF (2009) Advances in the understanding of inter-subspecific hybrid sterility and wide-compatibility in rice. Chin Sci Bull 5414(54):2332–2341. https://doi.org/10.1007/S11434-009-0371-4

    Article  Google Scholar 

  66. Toops S, Peterson MA, Vanderbush W et al (2021) International studies : An interdisciplinary approach to global issues. Int Stud. https://doi.org/10.4324/9781003028314

    Article  Google Scholar 

  67. Naresh BN, SHSN. NC, (2011) Effect of drought on yield potential and drought susceptibility index of promising aerobic rice (Oryza sativa L.) genotypes. Electron J Plant Breed 2:295–302

    Google Scholar 

  68. Shekhar H, Bidhan G, Viswavidyalaya CK (2017) Drought tolerance indices for screening some of rice genotypes. Int J Adv Biol Res 7:671–674

    Google Scholar 

  69. Raman A, Verulkar SB, Mandal NP et al (2012) Drought yield index to select high yielding rice lines under different drought stress severities. Rice 5:1–12. https://doi.org/10.1186/1939-8433-5-31/TABLES/6

    Article  Google Scholar 

  70. Jafari A, Paknejad F, Al-Ahmadi MJ (2009) Evaluation of selection indices for drought tolerance of corn (Zea mays L.) hybrids. Int J Plant Prod 3:1735–8043

    Google Scholar 

  71. Ehdaie B, Shakiba MR (1996) Relationship of internode-specific weight and water-soluble carbohydrates in wheat. Cereal Res Commun 24:61–67

    Google Scholar 

  72. Lker EĐ, Tatar Ö, TONK FA, TOSUN M, (2011) Determination of toelrance level of some wheat genotypes to post-anthesis drought. Turk J F Crop 16:59–63

    Google Scholar 

  73. Khalili M, Reza Naghavi M, Pour Aboughadareh A, Javad Talebzadeh S (2012) Evaluating of drought stress tolerance based on selection indices in spring canola cultivars (Brassica napus L.). J Agric Sci 4:78–85. https://doi.org/10.5539/jas.v4n11p78

    Article  Google Scholar 

  74. Balaji S, Vemireddy LR, Srikanth B, Dharika N, Sambasiva Rao KRS, Hemanth Kishore V, Sundaram RM, Viraktamath BC, Subhakara Rao I, Ramesha MS, Neeraja CN (2012) Fine mapping of Rf3 and Rf4 fertility restorer loci of WACMS of rice (Oryza sativa L.) and validation of the developed marker system for identification of restorer lines. Euphytica 187:421–435. https://doi.org/10.1007/s10681-012-0737-6

  75. Singh AK, Mahapatra T, Prabhu KV, Singh VP, Zaman FU, Mishra GP, Nandakumar N, Joseph M, Gopalakrishnan S, Aparajita G, Tyagi NK, Prakash P, Sharma RK, Shab US, Singh SK (2005) Application of molecular markers in rice breeding: progress at IARI. Advances in marker assisted selection workshop. Trainee’s manual, Handouts and references

Download references

Funding

This work was supported by ICAR-Indian Institute of Rice Research (ICAR-IIRR), National Innovations on Climate Resilient Agriculture (NICRA) and Govt. of India (F. No. Phy/NICRA/2011–2019). Author Senguttuvel P has received research support from ICAR-IIRR.

Author information

Authors and Affiliations

Authors

Contributions

NS and PS contributed to the study conception and design. Material preparation, data collection and analysis were performed by NS, PB, VJ and PN. The first draft of the manuscript was written by NS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to R. M. Sundaram or P. Senguttuvel.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

All the experiments carried out on plants were carried out in accordance with the guidelines of ICAR – Indian Institute of Rice Research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1373 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sravanraju, N., Beulah, P., Jaldhani, V. et al. Genetic enhancement of reproductive stage drought tolerance in RPHR-1005R and derivative rice hybrids through marker-assisted backcross breeding in rice (Oryza sativa L.). Mol Biol Rep 51, 426 (2024). https://doi.org/10.1007/s11033-024-09351-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09351-6

Keywords

Navigation