Skip to main content

Advertisement

Log in

Alterations in leukocyte telomere length and mitochondrial DNA copy number in benzene poisoning patients

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Objective

The aim of this study is to examine and evaluate the impact of benzene poisoning on the relative content of the mitochondrial MT-ND1 gene and telomere length in individuals with occupational chronic benzene poisoning (CBP) compared to a control group. The study will analyze and gather data on the mitochondrial gene content and telomere length in cases of benzene poisoning, and investigate the relationship with blood routine parameters in order to contribute scientific experimental data for the prevention and treatment of CBP.

Method

The case group comprised 30 individuals diagnosed with occupational chronic benzene poisoning, whereas the control group consisted of 60 healthy individuals who underwent physical examinations at our hospital concurrently. Blood routine indicators were detected and analyzed, and the PCR method was employed to measure changes in mitochondrial MT-ND1 content and telomere length. Subsequently, a comparison and analysis of the aforementioned indicators was conducted.

Result

The case group exhibited a higher mitochondrial gene content (median 366.2, IQR 90.0 rate) compared to the control group (median 101.5, IQR 12.0 rate), with a statistically significant difference between the two groups (P < 0.05). Additionally, the case group demonstrated lower white blood cell levels (3.78 ± 1.387 × 109/L) compared to the control group (5.74 ± 1.41 × 109/L), with a significant difference between the two groups (P < 0.05). Furthermore, the case group displayed lower red blood cell levels (3.86 ± 0.65 × 1012/L) compared to the control group (4.89 ± 0.65 × 1012/L), with a significant difference between the two groups (P < 0.05). The hemoglobin level in the case group (113.33 ± 16.34 g/L) was lower than that in the control group (138.22 ± 13.22 g/L). There was a significant difference between the two groups (P < 0.05). Platelet levels in the case group (153.80 ± 58.31 × 109/L) is smaller than the control group (244.92 ± 51.99 × 109/L), there was a significant difference between the two groups (P < 0.05). The average telomere length of the normal control group was 1.451 ± 0.475 (rate); The mean telomere length of individuals in the case group diagnosed with benzene poisoning was determined to be 1.237 ± 0.457 (rate). No significant correlation was observed between telomere length and three blood routine parameters, namely white blood cells (WBC), hemoglobin (HB), and platelets (PLT). However, a significant correlation was found between telomere length and red blood cell count (RBC). Additionally, a negative correlation was observed between mitochondrial gene content and white blood cell count (r = − 0.314, P = 0.026), as well as between mitochondrial gene content and red blood cell count (r = − 0.226, P = 0.032). Furthermore, a negative correlation was identified between mitochondrial gene content and hemoglobin (r = − 0.314, P = 0.028), and platelets (r = − 0.445, P = 0.001).

Conclusion

Individuals diagnosed with occupational chronic benzene poisoning exhibit a reduction in telomere length and an elevation in the relative content of the mitochondrial MT-ND1 gene. Moreover, a negative correlation is observed between the content of the mitochondrial MT-ND1 gene and four blood routine parameters, namely white blood cells (WBC), red blood cells (RBC), hemoglobin (HB), and platelets (PLT). Consequently, benzene exposure may potentially contribute to the onset of premature aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MT-ND1:

Mitochondrially encoded NADH dehydrogenase subunit 1

ATP:

Adenosine triphosphate

ROS:

Reactive oxygen species

WBC:

White blood cell

PLT:

Platelet

RBC:

Red blood cells

HB:

Hemoglobin

mtDNA:

Mitochondrial DNA

CBP:

Chronic benzene poisoning

IARC:

International Agency for Research on Cancer

References

  1. Wan W, Peters S, Portengen L, Olsson A, Schuz J, Ahrens W et al (2023) Occupational benzene exposure and lung cancer risk: a pooled analysis of 14 case-control studies. Am J Respir Crit Care Med. https://doi.org/10.1164/rccm.202306-0942OC

    Article  PubMed  Google Scholar 

  2. Lu PCW, Shahbaz S, Winn LM (2020) Benzene and its effects on cell signaling pathways related to hematopoiesis and leukemia. J Appl Toxicol 40(8):1018–1032. https://doi.org/10.1002/jat.3961

    Article  CAS  PubMed  Google Scholar 

  3. D’Souza LC, Dwivedi S, Raihan F, Yathisha UG, Raghu SV, Mamatha BS et al (2022) Hsp70 overexpression in Drosophila hemocytes attenuates benzene-induced immune and developmental toxicity via regulating ROS/JNK signaling pathway. Environ Toxicol 37(7):1723–1739. https://doi.org/10.1002/tox.23520

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Balliet RM, Capparelli C, Guido C, Pestell TG, Martinez-Outschoorn UE, Lin Z et al (2011) Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth: understanding the aging and cancer connection. Cell Cycle 10(23):4065–4073. https://doi.org/10.4161/cc.10.23.18254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hayashi MT (2018) Telomere biology in aging and cancer: early history and perspectives. Genes Genet Syst 92(3):107–118. https://doi.org/10.1266/ggs.17-00010

    Article  CAS  PubMed  Google Scholar 

  6. Martin H, Doumic M, Teixeira MT, Xu Z (2021) Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae. Cell Biosci 11(1):180. https://doi.org/10.1186/s13578-021-00693-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Smith EM, Pendlebury DF, Nandakumar J (2020) Structural biology of telomeres and telomerase. Cell Mol Life Sci 77(1):61–79. https://doi.org/10.1007/s00018-019-03369-x

    Article  CAS  PubMed  Google Scholar 

  8. Srinivas N, Rachakonda S, Kumar R (2020) Telomeres and telomere length: a general overview. Cancers (Basel). https://doi.org/10.3390/cancers12030558

    Article  PubMed  Google Scholar 

  9. Borges G, Criqui M, Harrington L (2022) Tieing together loose ends: telomere instability in cancer and aging. Mol Oncol 16(18):3380–3396. https://doi.org/10.1002/1878-0261.13299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bunout D, Backhouse C, Leiva L, Barrera G, Sierralta W, de la Maza MP et al (2009) Relationship between protein and mitochondrial DNA oxidative injury and telomere length and muscle loss in healthy elderly subjects. Arch Gerontol Geriatr 48(3):335–339. https://doi.org/10.1016/j.archger.2008.02.016

    Article  CAS  PubMed  Google Scholar 

  11. Chestkov IV, Jestkova EM, Ershova ES, Golimbet VG, Lezheiko TV, Kolesina NY et al (2018) ROS-induced DNA damage associates with abundance of mitochondrial DNA in white blood cells of the untreated schizophrenic patients. Oxid Med Cell Longev 2018:8587475. https://doi.org/10.1155/2018/8587475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Castellani CA, Longchamps RJ, Sun J, Guallar E, Arking DE (2020) Thinking outside the nucleus: mitochondrial DNA copy number in health and disease. Mitochondrion 53:214–223. https://doi.org/10.1016/j.mito.2020.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dubeau F, De Stefano N, Zifkin BG, Arnold DL, Shoubridge EA (2000) Oxidative phosphorylation defect in the brains of carriers of the tRNAleu(UUR) A3243G mutation in a MELAS pedigree. Ann Neurol 47(2):179–185

    Article  CAS  PubMed  Google Scholar 

  14. Tsuburaya R (2017) Mitochondrial dysfunction and left ventricular structural remodeling after acute myocardial infarction—usefulness of leukocyte mitochondrial copy number. Circ J 81(12):1772–1773. https://doi.org/10.1253/circj.CJ-17-1146

    Article  CAS  PubMed  Google Scholar 

  15. Zhou Y, Wang K, Wang B, Pu Y, Zhang J (2020) Occupational benzene exposure and the risk of genetic damage: a systematic review and meta-analysis. BMC Public Health 20(1):1113. https://doi.org/10.1186/s12889-020-09215-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Salem E, El-Garawani I, Allam H, El-Aal BA, Hegazy M (2018) Genotoxic effects of occupational exposure to benzene in gasoline station workers. Ind Health 56(2):132–140. https://doi.org/10.2486/indhealth.2017-0126

    Article  CAS  PubMed  Google Scholar 

  17. Ren JC, Liu H, Zhang GH, Wang T, Li J, Dong T et al (2020) Dataset on the effect of benzene exposure on genetic damage, hematotoxicity, telomere length and polymorphisms in metabolic and DNA repair genes. Data Brief 31:105869. https://doi.org/10.1016/j.dib.2020.105869

    Article  PubMed  PubMed Central  Google Scholar 

  18. Everson F, Martens DS, Nawrot TS, Goswami N, Mthethwa M, Webster I et al (2020) Personal exposure to NO(2) and benzene in the Cape Town region of South Africa is associated with shorter leukocyte telomere length in women. Environ Res 182:108993. https://doi.org/10.1016/j.envres.2019.108993

    Article  CAS  PubMed  Google Scholar 

  19. Schneider CV, Schneider KM, Teumer A, Rudolph KL, Hartmann D, Rader DJ et al (2022) Association of telomere length with risk of disease and mortality. JAMA Intern Med 182(3):291–300. https://doi.org/10.1001/jamainternmed.2021.7804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Song Y, Buettner GR (2010) Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide. Free Radic Biol Med 49(6):919–962. https://doi.org/10.1016/j.freeradbiomed.2010.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 20(7):745–754. https://doi.org/10.1038/s41556-018-0124-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang Y, Tan J, Wang W, Duan X, Lappe B, Shi L et al (2022) The association between polymorphisms in cell-cycle genes and mitochondrial DNA copy number in coke oven workers. Front Public Health 10:904856. https://doi.org/10.3389/fpubh.2022.904856

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gwozdzinski K, Pieniazek A, Gwozdzinski L (2021) Reactive oxygen species and their involvement in red blood cell damage in chronic kidney disease. Oxid Med Cell Longev 2021:6639199. https://doi.org/10.1155/2021/6639199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Delhaye J, Salamin N, Roulin A, Criscuolo F, Bize P, Christe P (2016) Interspecific correlation between red blood cell mitochondrial ROS production, cardiolipin content and longevity in birds. Age (Dordrecht) 38(5–6):433–443. https://doi.org/10.1007/s11357-016-9940-z

    Article  CAS  Google Scholar 

  25. Amin MM, Rafiei N, Poursafa P, Ebrahimpour K, Mozafarian N, Shoshtari-Yeganeh B et al (2018) Association of benzene exposure with insulin resistance, SOD, and MDA as markers of oxidative stress in children and adolescents. Environ Sci Pollut Res Int 25(34):34046–34052. https://doi.org/10.1007/s11356-018-3354-7

    Article  CAS  PubMed  Google Scholar 

  26. Carugno M, Pesatori AC, Dioni L, Hoxha M, Bollati V, Albetti B et al (2012) Increased mitochondrial DNA copy number in occupations associated with low-dose benzene exposure. Environ Health Perspect 120(2):210–215. https://doi.org/10.1289/ehp.1103979

    Article  CAS  PubMed  Google Scholar 

  27. Salimi A, Khodaparast F, Bohlooli S, Hashemidanesh N, Baghal E, Rezagholizadeh L (2022) Linalool reverses benzene-induced cytotoxicity, oxidative stress and lysosomal/mitochondrial damages in human lymphocytes. Drug Chem Toxicol 45(6):2454–2462. https://doi.org/10.1080/01480545.2021.1957563

    Article  CAS  PubMed  Google Scholar 

  28. Eom HY, Kim HR, Kim HY, Han DK, Baek HJ, Lee JH et al (2011) Mitochondrial DNA copy number and hnRNP A2/B1 protein: biomarkers for direct exposure of benzene. Environ Toxicol Chem 30(12):2762–2770. https://doi.org/10.1002/etc.675

    Article  CAS  PubMed  Google Scholar 

  29. Sun R, Liu M, Xu K, Pu Y, Huang J, Liu J et al (2022) Ferroptosis is involved in the benzene-induced hematotoxicity in mice via iron metabolism, oxidative stress and NRF2 signaling pathway. Chem Biol Interact 362:110004. https://doi.org/10.1016/j.cbi.2022.110004

    Article  CAS  PubMed  Google Scholar 

  30. Lulkiewicz M, Bajsert J, Kopczynski P, Barczak W, Rubis B (2020) Telomere length: how the length makes a difference. Mol Biol Rep 47(9):7181–7188. https://doi.org/10.1007/s11033-020-05551-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sanei B, Zavar Reza J, Momtaz M, Azimi M, Zare Sakhvidi MJ (2018) Occupational exposure to particulate matters and telomere length. Environ Sci Pollut Res Int 25(36):36298–36305. https://doi.org/10.1007/s11356-018-3486-9

    Article  CAS  PubMed  Google Scholar 

  32. Pawlas N, Plachetka A, Kozlowska A, Mikolajczyk A, Kasperczyk A, Dobrakowski M et al (2016) Telomere length, telomerase expression, and oxidative stress in lead smelters. Toxicol Ind Health 32(12):1961–1970. https://doi.org/10.1177/0748233715601758

    Article  CAS  PubMed  Google Scholar 

  33. Matzenbacher CA, Da Silva J, Garcia ALH, Cappetta M, de Freitas TRO (2019) Anthropogenic effects on natural mammalian populations: correlation between telomere length and coal exposure. Sci Rep 9(1):6325. https://doi.org/10.1038/s41598-019-42804-8

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guo Z, Zou K, Li X, Duan X, Fan Y, Liu X et al (2022) Relationship between miRNAs polymorphisms and peripheral blood leukocyte DNA telomere length in coke oven workers: a cross-sectional study. Environ Toxicol Pharmacol 95:103941. https://doi.org/10.1016/j.etap.2022.103941

    Article  CAS  PubMed  Google Scholar 

  35. Duan X, Zhang D, Wang S, Feng X, Wang T, Wang P et al (2020) Effects of polycyclic aromatic hydrocarbon exposure and miRNA variations on peripheral blood leukocyte DNA telomere length: a cross-sectional study in Henan Province, China. Sci Total Environ 703:135600. https://doi.org/10.1016/j.scitotenv.2019.135600

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Niu Z, Wen X, Wang M, Tian L, Mu L (2022) Personal exposure to benzene, toluene, ethylbenzene, and xylenes (BTEXs) mixture and telomere length: a cross-sectional study of the general US adult population. Environ Res 209:112810. https://doi.org/10.1016/j.envres.2022.112810

    Article  CAS  PubMed  Google Scholar 

  37. Wang W, Wang P, Wang S, Duan X, Wang T, Feng X et al (2019) Benchmark dose assessment for coke oven emissions-induced telomere length effects in occupationally exposed workers in China. Ecotoxicol Environ Saf 182:109453. https://doi.org/10.1016/j.ecoenv.2019.109453

    Article  CAS  PubMed  Google Scholar 

  38. Moslehi J, DePinho RA, Sahin E (2012) Telomeres and mitochondria in the aging heart. Circ Res 110(9):1226–1237. https://doi.org/10.1161/CIRCRESAHA.111.246868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun L, Tan R, Xu J, LaFace J, Gao Y, Xiao Y et al (2015) Targeted DNA damage at individual telomeres disrupts their integrity and triggers cell death. Nucleic Acids Res 43(13):6334–6347. https://doi.org/10.1093/nar/gkv598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barnes RP, Fouquerel E, Opresko PL (2019) The impact of oxidative DNA damage and stress on telomere homeostasis. Mech Ageing Dev 177:37–45. https://doi.org/10.1016/j.mad.2018.03.013

    Article  CAS  PubMed  Google Scholar 

  41. van der Laan L, Cardenas A, Vermeulen R, Fadadu RP, Hubbard AE, Phillips RV et al (2022) Epigenetic aging biomarkers and occupational exposure to benzene, trichloroethylene and formaldehyde. Environ Int 158:106871. https://doi.org/10.1016/j.envint.2021.106871

    Article  CAS  PubMed  Google Scholar 

  42. Miwa S, Kashyap S, Chini E, von Zglinicki T (2022) Mitochondrial dysfunction in cell senescence and aging. J Clin Investig. https://doi.org/10.1172/JCI158447

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ochi S, Roy B, Prall K, Shelton RC, Dwivedi Y (2023) Strong associations of telomere length and mitochondrial copy number with suicidality and abuse history in adolescent depressed individuals. Mol Psychiatry. https://doi.org/10.1038/s41380-023-02263-0

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gao X, Yu X, Zhang C, Wang Y, Sun Y, Sun H et al (2022) Telomeres and mitochondrial metabolism: implications for cellular senescence and age-related diseases. Stem Cell Rev Rep 18(7):2315–2327. https://doi.org/10.1007/s12015-022-10370-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Campa D, Barrdahl M, Santoro A, Severi G, Baglietto L, Omichessan H et al (2018) Mitochondrial DNA copy number variation, leukocyte telomere length, and breast cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Breast Cancer Res 20(1):29. https://doi.org/10.1186/s13058-018-0955-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Science and Technology Planning Project of Shenzhen Municipality (Nos. KCXFZ20201221173602007, JCYJ20190808174815278) and Shenzhen Fund for Guangdong Provincial High- level Clinical Key Specialties (No. SZGSP015).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by XY, PL, ZZ and WZ, YG, DW, SF, NZ. The first draft of the manuscript was written by DW and DL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Dianpeng Wang or Naixing Zhang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the ethical Committee of Shenzhen Prevention and Treatment Center for Occupational Diseases with the following code (LL202014).

Consent to participation

Informed consent was obtained from all individual participants included in the study.

Consent to publication

The authors affirm that human research participants provided informed consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Lin, D., Yang, X. et al. Alterations in leukocyte telomere length and mitochondrial DNA copy number in benzene poisoning patients. Mol Biol Rep 51, 309 (2024). https://doi.org/10.1007/s11033-024-09238-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09238-6

Keywords

Navigation