Skip to main content

Advertisement

Log in

Mutational analysis in different genes underlying severe combined immunodeficiency in seven consanguineous Pakistani families

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Severe Combined Immunodeficiency (SCID) is an autosomal recessive inborn error of immunity (IEI) characterized by recurrent chest and gastrointestinal (GI) infections and in some cases associated with life-threatening disorders.

Methodology and results

This current study aims to unwind the molecular etiology of SCID and also extended the patients’ phenotype associated with identified particular variants. Herein, we present 06 disease-causing variants identified in 07 SCID-patients in three different SCID related genes. Whole Exome Sequencing (WES) followed by Sanger Sequencing was employed to explore genetic variations. The results included identification of two previously reported heterozygous variants in homozygous form for the first time in RAG1gene [(p.Arg410Gln);(p.Arg737His)], followed by a recurrent variant (p.Trp959*) in RAG1, a novel variant in IL2RG (p.Asp48Lfs*24), a recurrent variant in IL2RG (p.Gly271Glu) and a recurrent variant in DCLRE1C (p.Arg191*) gene.

Conclusion

To conclude, the immune-profiling and WES revealed two novel, two as homozygous state for the first time, and two recurrent disease causing variants contributing valuably to our existing knowledge of SCID.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data will be provided upon request.

References

  1. Pieniawska-Śmiech K, Pasternak G, Lewandowicz-Uszyńska A, Jutel M (2022) Diagnostic challenges in patients with inborn errors of immunity with different manifestations of immune dysregulation. J Clin Med 11(14):4220

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yamashita M, Inoue K, Okano T et al (2021) Inborn errors of immunity—recent advances in research on the pathogenesis. Inflamm Regener 41:9

    Article  Google Scholar 

  3. Abolhassani H, Azizi G, Sharifi L, Yazdani R, Mohsenzadegan M, Delavari S, Aghamohammadi A (2020) Global systematic review of primary immunodeficiency registries. Expert Rev Clin Immunol 16(7):717–732

    Article  CAS  PubMed  Google Scholar 

  4. Wadbudhe AM, Meshram RJ, Tidke SC (2023) Severe combined immunodeficiency (SCID) and its new treatment modalities. Cureus. https://doi.org/10.7759/cureus.47759

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kumrah R, Vignesh P, Patra P, Singh A, Anjani G, Saini P, Rawat A (2020) Genetics of severe combined immunodeficiency. Genes Dis 7(1):52–61

    Article  CAS  PubMed  Google Scholar 

  6. Dvorak CC, Haddad E, Heimall J, Dunn E, Cowan MJ, Pai SY, Puck JM (2023) The diagnosis of severe combined immunodeficiency: implementation of the PIDTC 2022 definitions. J Allergy Clin Immunol 151(2):547–555

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Q, Frange P, Blanche S, Casanova JL (2017) Pathogenesis of infections in HIV-infected individuals: insights from primary immunodefciencies. Curr Opin Immunol 48:122–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tangye SG, Al-Herz W, Bousfha A, Chatila T, Cunningham-Rundles C, Etzioni A et al (2020) Human inborn errors of immunity: 2019 update on the classifcation from the international union of immunological societies expert committee. J Clin Immunol 40(1):24–64

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595

    Article  PubMed  PubMed Central  Google Scholar 

  10. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164–e164

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kircher M, Witten DM, Jain P, O’roak BJ, Cooper GM, Shendure J (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46:310–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bousfiha A, Jeddane L, Picard C, Al-Herz W, Ailal F, Chatila T, Tangye SG (2020) Human inborn errors of immunity: 2019 update of the IUIS phenotypical classification. J Clin Immunol 40:66–81

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee YN, Frugoni F, Dobbs K, Tirosh I, Du L, Ververs FA, Notarangelo LD (2016) Characterization of T and B cell repertoire diversity in patients with RAG deficiency. Sci Immunol 1(6):6109

    Article  Google Scholar 

  15. Villa A, Sobacchi C, Notarangelo LD, Bozzi F, Abinun M, Abrahamsen TG, Schwarz K (2001) V (D) J recombination defects in lymphocytes due to RAG mutations: severe immunodeficiency with a spectrum of clinical presentations. Blood 97(1):81–88

    Article  CAS  PubMed  Google Scholar 

  16. Lee YN, Frugoni F, Dobbs K, Walter JE, Giliani S, Gennery AR, Notarangelo LD (2014) A systematic analysis of recombination activity and genotype-phenotype correlation in human recombination-activating gene 1 deficiency. J Allergy Clin Immunol 133(4):1099–1108

    Article  CAS  PubMed  Google Scholar 

  17. Kumánovics A, Lee YN, Close DW, Coonrod EM, Ujhazi B, Chen K, Walter JE (2017) Estimated disease incidence of RAG1/2 mutations: a case report and querying the exome aggregation consortium. J Allergy Clin Immunol 139(2):690–692

    Article  PubMed  Google Scholar 

  18. Villa A, Santagata S, Bozzi F, Giliani S, Frattini A, Imberti L, Spanopoulou E (1998) Partial V (D) J recombination activity leads to omenn syndrome. Cell 93(5):885–896

    Article  CAS  PubMed  Google Scholar 

  19. Schuetz C, Gudowius S, Niehues T, Schulz A, Schwarz K, Debatin KM, Friedrich W (2005) Compound heterozygeous RAG-1 mutations in 2 patients presenting with chronic disfiguring granulomatous skin lesions. Blood 106(11):3898

    Article  Google Scholar 

  20. Inglis AJ, Guna A, Gálvez-Merchán Á, Pal A, Esantsi TK, Keys HR, Voorhees RM (2023) Coupled protein quality control during nonsense-mediated mRNA decay. J Cell Sci 136(10):jcs261216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Puck JM, Pepper AE, Henthorn PS, Candotti F, Isakov J, Whitwam T, Buckley RH (1997) Mutation analysis of IL2RG in human X-linked severe combined immunodeficiency. Blood 89(6):1968–1977

    CAS  PubMed  Google Scholar 

  22. Halacli SO (2022) The effect of mutatio-type on proteo-phenotype and clinico-phenotype in selected primary immunodeficiencies. Immunol Res 70(1):56–66

    Article  CAS  PubMed  Google Scholar 

  23. Niemela JE, Puck JM, Fischer RE, Fleisher TA, Hsu AP (2000) Efficient detection of thirty-seven new IL2RG mutations in human X-linked severe combined immunodeficiency. Clin Immunol 95(1):33–38

    Article  CAS  PubMed  Google Scholar 

  24. Ott N, Faletti L, Heeg M, Andreani V, Grimbacher B (2023) JAKs and STATs from a clinical perspective: loss-of-function mutations, gain-of-function mutations, and their multidimensional consequences. J Clin Immunol 43(6):1326–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gaikwad P, Bargir UA, Shinde S, Kini P, Chaurasia R, Yadav U, Madkaikar M (2023) A Clinical conundrum with diagnostic and therapeutic challenge: a tale of two disorders in one case. J Clin Immunol 43:1891

    Article  CAS  PubMed  Google Scholar 

  26. Volk T, Pannicke U, Reisli I, Bulashevska A, Ritter J, Björkman A, Grimbacher B (2015) DCLRE1C (ARTEMIS) mutations causing phenotypes ranging from atypical severe combined immunodeficiency to mere antibody deficiency. Hum Mol Genet 24(25):7361–7372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Felgentreff K, Lee YN, Frugoni F, Du L, van der Burg M, Giliani S, Notarangelo LD (2015) Functional analysis of naturally occurring DCLRE1C mutations and correlation with the clinical phenotype of ARTEMIS deficiency. J Allergy Clin Immunol 136(1):140–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Platt CD, Zaman F, Bainter W, Stafstrom K, Almutairi A, Reigle M, Weeks S, Geha RS, Chou J (2021) Efficacy and economics of targeted panel versus whole-exome sequencing in 878 patients with suspected primary immunodeficiency. J Allergy Clin Immunol 147(2):723–726. https://doi.org/10.1016/j.jaci.2020.08.022

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors (Hajra Fayyaz and Atteaya Zaman) were supported by IRSIP fellowships from Higher Education Commission (HEC), Islamabad, Pakistan.

Author information

Authors and Affiliations

Authors

Contributions

Hajra Fayyaz and Atteaya Zaman collected blood samples, performed experimental work and prepared the manuscript. Sheeba Shabbir, Zara Khalid, Nighat Haider, and Ali Faisal Saleem identified the families and help in diagnosis of disease phenotypes. Wasim Ahmad and Imran Ullah designed the study, provided funds and finalized the manuscript.

Corresponding author

Correspondence to Imran Ullah.

Ethics declarations

Competing interests

The authors declare no competing interest.

Ethical approval

The research study was approved by Institutional Review Board (IRB), Quaid-i-Azam University, Islamabad, Pakistan under ethical committee approval number ‘IRB-QA-176’. Informed written consent was taken from participating members of families. Blood sampling from normal and affected individuals were carried out according to guidelines provided by Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayyaz, H., Zaman, A., Shabbir, S. et al. Mutational analysis in different genes underlying severe combined immunodeficiency in seven consanguineous Pakistani families. Mol Biol Rep 51, 302 (2024). https://doi.org/10.1007/s11033-024-09222-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09222-0

Keywords

Navigation