Skip to main content

Advertisement

Log in

FOXO3a-interacting proteins’ involvement in cancer: a review

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Due to its role in apoptosis, differentiation, cell cycle arrest, and DNA damage repair in stress responses (oxidative stress, hypoxia, chemotherapeutic drugs, and UV irradiation or radiotherapy), FOXO3a is considered a key tumor suppressor that determines radiotherapeutic and chemotherapeutic responses in cancer cells. Mutations in the FOXO3a gene are rare, even in cancer cells. Post-translational regulations are the main mechanisms for inactivating FOXO3a. The subcellular localization, stability, transcriptional activity, and DNA binding affinity for FOXO3a can be modulated via various post-translational modifications, including phosphorylation, acetylation, and interactions with other transcriptional factors or regulators. This review summarizes how proteins that interact with FOXO3a engage in cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

TF:

Transcription factor

FH:

Forkhead

DBD:

DNA binding domain

H1:

Helix 1

S1:

Strand 1

IDRs:

Intrinsically disordered regions

CRs:

Conserved regions

NLS:

Nuclear localization sequences

TAD:

Trans-activation domain

NES:

Nuclear export sequence

OS:

Oxidative stress

PTMs:

Post-translational modifications

TRs:

Transcriptional regulators

NSCLC:

Non-small cell lung cancer

SGK:

Serum and glucocorticoid-inducible kinase

IKK:

IκB kinase

UPD:

Ubiquitin–proteasome degradation

Aur-A:

Aurora-A

SKP2:

S-phase kinase-associated protein 2

AMPK:

AMP-activated protein kinase

MST1:

Mammalian Sterile 20-like kinase 1

BC:

Breast cancer

EMT:

Epithelial-mesenchymal transition

CRC:

Colorectal cancer

FHRE:

FH transcriptional response element

CARM1:

Coactivator-Associated Arginine Methyltransferase1

References

  1. Spreitzer E, Alderson TR, Bourgeois B et al (2022) FOXO transcription factors differ in their dynamics and intra/intermolecular interactions. Curr Res Struct Biol 4:118–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen HY, Chen YM, Wu J et al (2016) Expression of FOXO6 is associated with oxidative stress level and predicts the prognosis in hepatocellular cancer: a comparative study. Medicine (Baltimore) 95(21):e3708

    Article  CAS  PubMed  Google Scholar 

  3. Paik JH, Kollipara R, Chu G et al (2007) FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128(2):309–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brunet A, Bonni A, Zigmond MJ et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868

    Article  CAS  PubMed  Google Scholar 

  5. Brunet A, Kanai F, Stehn J et al (2002) 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J Cell Biol 156(5):817–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mathivanan S, Chunchagatta Lakshman PK, Singh M et al (2022) Structure of a 14-3-3epsilon:FOXO3a(pS253) phosphopeptide complex reveals 14-3-3 isoform-specific binding of forkhead box class O transcription factor (FOXO) phosphoproteins. ACS Omega 7(28):24344–24352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Emery A, Hardwick BS, Crooks AT et al (2021) Target identification for small-molecule discovery in the FOXO3a tumor-suppressor pathway using a biodiverse peptide library. Cell Chem Biol 28(11):1602–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dong X, Biswas A, Suel KE et al (2009) Structural basis for leucine-rich nuclear export signal recognition by CRM1. Nature 458(7242):1136–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang J, Sun T, Meng Z et al (2021) XPO1 inhibition synergizes with PARP1 inhibition in small cell lung cancer by targeting nuclear transport of FOXO3a. Cancer Lett 503:197–212

    Article  CAS  PubMed  Google Scholar 

  10. Conforti F, Zhang X, Rao G et al (2017) Therapeutic effects of XPO1 inhibition in thymic epithelial tumors. Cancer Res 77(20):5614–5627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nie D, Xiao X, Chen J et al (2022) Prognostic and therapeutic significance of XPO1 in T-cell lymphoma. Exp Cell Res 416(2):113180

    Article  CAS  PubMed  Google Scholar 

  12. Kim W, Youn H, Seong KM et al (2011) PIM1-activated PRAS40 regulates radioresistance in non-small cell lung cancer cells through interplay with FOXO3a, 14-3-3 and protein phosphatases. Radiat Res 176(5):539–552

    Article  CAS  PubMed  Google Scholar 

  13. Obsilova V, Vecer J, Herman P et al (2005) 14-3-3 Protein interacts with nuclear localization sequence of forkhead transcription factor FoxO4. Biochemistry 44(34):11608–11617

    Article  CAS  PubMed  Google Scholar 

  14. Brownawell AM, Kops GJ, Macara IG, Burgering BM (2001) Inhibition of nuclear import by protein kinase B (Akt) regulates the subcellular distribution and activity of the forkhead transcription factor AFX. Mol Cell Biol 21(10):3534–3546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rena G, Prescott AR, Guo S, Cohen P, Unterman TG (2001) Roles of the forkhead in rhabdomyosarcoma (FKHR) phosphorylation sites in regulating 14-3-3 binding, transactivation and nuclear targetting. Biochem J 354(Pt 3):605–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cahill CM, Tzivion G, Nasrin N et al (2001) Phosphatidylinositol 3-kinase signaling inhibits DAF-16 DNA binding and function via 14-3-3-dependent and 14-3-3-independent pathways. J Biol Chem 276(16):13402–13410

    Article  CAS  PubMed  Google Scholar 

  17. Singh A, Ye M, Bucur O et al (2010) Protein phosphatase 2A reactivates FOXO3a through a dynamic interplay with 14-3-3 and AKT. Mol Biol Cell 21(6):1140–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sunayama J, Tsuruta F, Masuyama N, Gotoh Y (2005) JNK antagonizes Akt-mediated survival signals by phosphorylating 14-3-3. J Cell Biol 170(2):295–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nguyen LT, Lee YH, Sharma AR et al (2017) Quercetin induces apoptosis and cell cycle arrest in triple-negative breast cancer cells through modulation of Foxo3a activity. Korean J Physiol Pharmacol 21(2):205–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kong W, Li C, Qi Q, Shen J, Chang K (2019) Cardamonin induces G2/M arrest and apoptosis via activation of the JNK-FOXO3a pathway in breast cancer cells. Cell Biol Int 44(1):177–188

    Article  PubMed  Google Scholar 

  21. Yu T, Ji J, Guo YL (2013) MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells. Biochem Biophys Res Commun 441(1):53–58

    Article  CAS  PubMed  Google Scholar 

  22. Sunters A, Madureira PA, Pomeranz KM et al (2006) Paclitaxel-induced nuclear translocation of FOXO3a in breast cancer cells is mediated by c-Jun NH2-terminal kinase and Akt. Cancer Res 66(1):212–220

    Article  CAS  PubMed  Google Scholar 

  23. Sun L, Huang Y, Liu Y et al (2018) Ipatasertib, a novel Akt inhibitor, induces transcription factor FoxO3a and NF-kappaB directly regulates PUMA-dependent apoptosis. Cell Death Dis 9(9):911

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ock CW, Kim GD (2021) Harmine hydrochloride mediates the induction of G2/M Cell Cycle arrest in breast cancer cells by regulating the MAPKs and AKT/FOXO3a signaling pathways. Molecules 26(21):6714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Patra T, Meyer K, Ray RB, Kanda T, Ray R (2021) Akt inhibitor augments anti-proliferative efficacy of a dual mTORC1/2 inhibitor by FOXO3a activation in p53 mutated hepatocarcinoma cells. Cell Death Dis 12(11):1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu M, Xu C, Qin X et al (2022) DHW-221, a dual PI3K/mTOR inhibitor, overcomes multidrug resistance by targeting P-glycoprotein (P-gp/ABCB1) and Akt-mediated FOXO3a nuclear translocation in non-small cell lung cancer. Front Oncol 12:873649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brunet A, Park J, Tran H, Hu LS, Hemmings BA, Greenberg ME (2001) Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol Cell Biol 21(3):952–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. You H, Jang Y, You-Ten AI et al (2004) p53-dependent inhibition of FKHRL1 in response to DNA damage through protein kinase SGK1. Proc Natl Acad Sci USA 101(39):14057–14062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu MC, Lee DF, Xia W et al (2004) IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117(2):225–237

    Article  CAS  PubMed  Google Scholar 

  30. Guo JP, Tian W, Shu S, Xin Y, Shou C, Cheng JQ (2013) IKBKE phosphorylation and inhibition of FOXO3a: a mechanism of IKBKE oncogenic function. PLoS ONE 8(5):e63636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wilson MK, McWhirter SM, Amin RH, Huang D, Schlissel MS (2010) Abelson virus transformation prevents TRAIL expression by inhibiting FoxO3a and NF-kappaB. Mol Cells 29(4):333–341

    Article  CAS  PubMed  Google Scholar 

  32. Su JL, Cheng X, Yamaguchi H et al (2011) FOXO3a-dependent mechanism of E1A-induced chemosensitization. Cancer Res 71(21):6878–6887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Buontempo F, Chiarini F, Bressanin D et al (2012) Activity of the selective IkappaB kinase inhibitor BMS-345541 against T-cell acute lymphoblastic leukemia: involvement of FOXO3a. Cell Cycle 11(13):2467–2475

    Article  CAS  PubMed  Google Scholar 

  34. Yang JY, Zong CS, Xia W et al (2008) ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol 10(2):138–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li P, Chen T, Kuang P et al (2022) Aurora-A/FOXO3A/SKP2 axis promotes tumor progression in clear cell renal cell carcinoma and dual-targeting Aurora-A/SKP2 shows synthetic lethality. Cell Death Dis 13(7):606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kelly KR, Nawrocki ST, Espitia CM et al (2012) Targeting Aurora A kinase activity with the investigational agent alisertib increases the efficacy of cytarabine through a FOXO-dependent mechanism. Int J Cancer 131(11):2693–2703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ho KK, McGuire VA, Koo CY et al (2012) Phosphorylation of FOXO3a on Ser-7 by p38 promotes its nuclear localization in response to doxorubicin. J Biol Chem 287(2):1545–1555

    Article  CAS  PubMed  Google Scholar 

  38. Marzi L, Combes E, Vie N et al (2016) FOXO3a and the MAPK p38 are activated by cetuximab to induce cell death and inhibit cell proliferation and their expression predicts cetuximab efficacy in colorectal cancer. Br J Cancer 115(10):1223–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Matrone A, Grossi V, Chiacchiera F et al (2010) p38alpha is required for ovarian cancer cell metabolism and survival. Int J Gynecol Cancer 20(2):203–211

    Article  PubMed  Google Scholar 

  40. Germani A, Matrone A, Grossi V et al (2014) Targeted therapy against chemoresistant colorectal cancers: Inhibition of p38alpha modulates the effect of cisplatin in vitro and in vivo through the tumor suppressor FoxO3A. Cancer Lett 344(1):110–118

    Article  CAS  PubMed  Google Scholar 

  41. Greer EL, Oskoui PR, Banko MR et al (2007) The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem 282(41):30107–30119

    Article  CAS  PubMed  Google Scholar 

  42. Yasuda K, Ueda Y, Ozawa M, Matsuda T, Kinashi T (2016) Enhanced cytotoxic T-cell function and inhibition of tumor progression by Mst1 deficiency. FEBS Lett 590(1):68–75

    Article  CAS  PubMed  Google Scholar 

  43. Lehtinen MK, Yuan Z, Boag PR et al (2006) A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 125(5):987–1001

    Article  CAS  PubMed  Google Scholar 

  44. Yuan Z, Lehtinen MK, Merlo P, Villen J, Gygi S, Bonni A (2009) Regulation of neuronal cell death by MST1-FOXO1 signaling. J Biol Chem 284(17):11285–11292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang Y, Li J, Gao Y et al (2019) Hippo kinases regulate cell junctions to inhibit tumor metastasis in response to oxidative stress. Redox Biol 26:101233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Song S, Tang H, Quan W, Shang A, Ling C (2022) Estradiol initiates the immune escape of non-small cell lung cancer cells via ERbeta/SIRT1/FOXO3a/PD-L1 axis. Int Immunopharmacol 107:108629

    Article  CAS  PubMed  Google Scholar 

  47. Fong Y, Lin YC, Wu CY et al (2014) The antiproliferative and apoptotic effects of sirtinol, a sirtuin inhibitor on human lung cancer cells by modulating Akt/beta-catenin-Foxo3a axis. Sci World J 2014:937051

    Article  Google Scholar 

  48. Abdelmawgoud H, El Awady RR (2017) Effect of Sirtuin 1 inhibition on matrix metalloproteinase 2 and Forkhead box O3a expression in breast cancer cells. Genes Dis 4(4):240–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu D, Wu L, Jiang X et al (2019) SIRT2 inhibition results in meiotic arrest, mitochondrial dysfunction, and disturbance of redox homeostasis during bovine oocyte maturation. Int J Mol Sci 20(6):1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang Y, Mu Y, Zhou X et al (2017) SIRT2-mediated FOXO3a deacetylation drives its nuclear translocation triggering FasL-induced cell apoptosis during renal ischemia reperfusion. Apoptosis 22(4):519–530

    Article  CAS  PubMed  Google Scholar 

  51. Wang Y, Zhu Y, Xing S, Ma P, Lin D (2015) SIRT5 prevents cigarette smoke extract-induced apoptosis in lung epithelial cells via deacetylation of FOXO3. Cell Stress Chaperones 20(5):805–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bonezzi K, Belotti D, North BJ et al (2012) Inhibition of SIRT2 potentiates the anti-motility activity of taxanes: implications for antineoplastic combination therapies. Neoplasia 14(9):846–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li R, Quan Y, Xia W (2018) SIRT3 inhibits prostate cancer metastasis through regulation of FOXO3A by suppressing Wnt/beta-catenin pathway. Exp Cell Res 364(2):143–151

    Article  CAS  PubMed  Google Scholar 

  54. Cao Y, Li P, Wang H, Li L, Li Q (2021) SIRT3 promotion reduces resistance to cisplatin in lung cancer by modulating the FOXO3/CDT1 axis. Cancer Med 10(4):1394–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang X, Zeng Q, Li Z, Yang X, Xia W, Chen Z (2019) Adjudin synergizes with paclitaxel and inhibits cell growth and metastasis by regulating the sirtuin 3-Forkhead box O3a axis in human small-cell lung cancer. Thorac Cancer 10(4):642–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shiota M, Yokomizo A, Kashiwagi E et al (2010) Foxo3a expression and acetylation regulate cancer cell growth and sensitivity to cisplatin. Cancer Sci 101(5):1177–1185

    Article  CAS  PubMed  Google Scholar 

  57. Jeung YJ, Kim HG, Ahn J et al (2016) Shikonin induces apoptosis of lung cancer cells via activation of FOXO3a/EGR1/SIRT1 signaling antagonized by p300. Biochim Biophys Acta 1863(11):2584–2593

    Article  CAS  PubMed  Google Scholar 

  58. Wang F, Marshall CB, Yamamoto K et al (2012) Structures of KIX domain of CBP in complex with two FOXO3a transactivation domains reveal promiscuity and plasticity in coactivator recruitment. Proc Natl Acad Sci USA 109(16):6078–6083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li C, Xiao XQ, Qian YH, Zhou ZY (2019) The CtBP1-p300-FOXO3a transcriptional complex represses the expression of the apoptotic regulators Bax and Bim in human osteosarcoma cells. J Cell Physiol 234(12):22365–22377

    Article  CAS  PubMed  Google Scholar 

  60. Liu J, Duan Z, Guo W et al (2018) Targeting the BRD4/FOXO3a/CDK6 axis sensitizes AKT inhibition in luminal breast cancer. Nat Commun 9(1):5200

    Article  PubMed  PubMed Central  Google Scholar 

  61. Brunet A, Sweeney LB, Sturgill JF et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303(5666):2011–2015

    Article  CAS  PubMed  Google Scholar 

  62. Hu Q, Wang G, Peng J et al (2017) Knockdown of SIRT1 suppresses bladder cancer cell proliferation and migration and induces cell cycle Arrest and antioxidant response through FOXO3a-mediated pathways. Biomed Res Int 2017:3781904

    Article  PubMed  PubMed Central  Google Scholar 

  63. Huo L, Bai X, Wang Y, Wang M (2017) Betulinic acid derivative B10 inhibits glioma cell proliferation through suppression of SIRT1, acetylation of FOXO3a and upregulation of Bim/PUMA. Biomed Pharmacother 92:347–355

    Article  CAS  PubMed  Google Scholar 

  64. Frazzi R, Valli R, Tamagnini I, Casali B, Latruffe N, Merli F (2013) Resveratrol-mediated apoptosis of hodgkin lymphoma cells involves SIRT1 inhibition and FOXO3a hyperacetylation. Int J Cancer 132(5):1013–1021

    Article  CAS  PubMed  Google Scholar 

  65. Xia XY, Yu YJ, Ye F, Peng GY, Li YJ, Zhou XM (2020) MicroRNA-506-3p inhibits proliferation and promotes apoptosis in ovarian cancer cell via targeting SIRT1/AKT/FOXO3a signaling pathway. Neoplasma 67(2):344–353

    Article  CAS  PubMed  Google Scholar 

  66. Khongkow M, Olmos Y, Gong C et al (2013) SIRT6 modulates paclitaxel and epirubicin resistance and survival in breast cancer. Carcinogenesis 34(7):1476–1486

    Article  CAS  PubMed  Google Scholar 

  67. Han LL, Jia L, Wu F, Huang C (2019) Sirtuin6 (SIRT6) promotes the EMT of hepatocellular carcinoma by stimulating autophagic degradation of E-cadherin. Mol Cancer Res 17(11):2267–2280

    Article  CAS  PubMed  Google Scholar 

  68. Mahmud DL, Deb DK, Platanias LC, Uddin S, Wickrema A (2002) Phosphorylation of forkhead transcription factors by erythropoietin and stem cell factor prevents acetylation and their interaction with coactivator p300 in erythroid progenitor cells. Oncogene 21(10):1556–1562

    Article  CAS  PubMed  Google Scholar 

  69. Almeida M, Han L, Martin-Millan M, O’Brien CA, Manolagas SC (2007) Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J Biol Chem 282(37):27298–27305

    Article  CAS  PubMed  Google Scholar 

  70. Ordonez-Moran P, Irmisch A, Barbachano A et al (2014) SPROUTY2 is a beta-catenin and FOXO3a target gene indicative of poor prognosis in colon cancer. Oncogene 33(15):1975–1985

    Article  CAS  PubMed  Google Scholar 

  71. Liu H, Yin J, Wang H et al (2015) FOXO3a modulates WNT/beta-catenin signaling and suppresses epithelial-to-mesenchymal transition in prostate cancer cells. Cell Signal 27(3):510–518

    Article  CAS  PubMed  Google Scholar 

  72. Zhou Y, Liang C, Xue F et al (2015) Salinomycin decreases doxorubicin resistance in hepatocellular carcinoma cells by inhibiting the beta-catenin/TCF complex association via FOXO3a activation. Oncotarget 6(12):10350–10365

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tenbaum SP, Ordonez-Moran P, Puig I et al (2012) beta-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat Med 18(6):892–901

    Article  CAS  PubMed  Google Scholar 

  74. Arques O, Chicote I, Puig I et al (2016) Tankyrase inhibition blocks Wnt/beta-catenin pathway and reverts resistance to PI3K and AKT inhibitors in the treatment of colorectal cancer. Clin Cancer Res 22(3):644–656

    Article  CAS  PubMed  Google Scholar 

  75. Yan Y, Lackner MR (2012) FOXO3a and beta-catenin co-localization: double trouble in colon cancer? Nat Med 18(6):854–856

    Article  CAS  PubMed  Google Scholar 

  76. Xu K, Zhang Z, Pei H, Wang H, Li L, Xia Q (2017) FoxO3a induces temozolomide resistance in glioblastoma cells via the regulation of beta-catenin nuclear accumulation. Oncol Rep 37(4):2391–2397

    Article  CAS  PubMed  Google Scholar 

  77. Seoane J, Le HV, Shen L, Anderson SA, Massague J (2004) Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117(2):211–223

    Article  CAS  PubMed  Google Scholar 

  78. Fu G, Peng C (2011) Nodal enhances the activity of FoxO3a and its synergistic interaction with Smads to regulate cyclin G2 transcription in ovarian cancer cells. Oncogene 30(37):3953–3966

    Article  CAS  PubMed  Google Scholar 

  79. Karadedou CT, Gomes AR, Chen J et al (2012) FOXO3a represses VEGF expression through FOXM1-dependent and -independent mechanisms in breast cancer. Oncogene 31(14):1845–1858

    Article  CAS  PubMed  Google Scholar 

  80. Littler DR, Alvarez-Fernandez M, Stein A et al (2010) Structure of the FoxM1 DNA-recognition domain bound to a promoter sequence. Nucleic Acids Res 38(13):4527–4538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hu C, Ni Z, Li BS et al (2017) hTERT promotes the invasion of gastric cancer cells by enhancing FOXO3a ubiquitination and subsequent ITGB1 upregulation. Gut 66(1):31–42

    Article  CAS  PubMed  Google Scholar 

  82. Osei-Sarfo K, Gudas LJ (2019) Retinoids induce antagonism between FOXO3A and FOXM1 transcription factors in human oral squamous cell carcinoma (OSCC) cells. PLoS ONE 14(4):e0215234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhu WL, Tong H, Teh JT, Wang M (2014) Forkhead box protein O3 transcription factor negatively regulates autophagy in human cancer cells by inhibiting forkhead box protein O1 expression and cytosolic accumulation. PLoS ONE 9(12):e115087

    Article  PubMed  PubMed Central  Google Scholar 

  84. McGovern UB, Francis RE, Peck B et al (2009) Gefitinib (Iressa) represses FOXM1 expression via FOXO3a in breast cancer. Mol Cancer Ther 8(3):582–591

    Article  CAS  PubMed  Google Scholar 

  85. Sun H, Zhang N, Jin Y, Xu H (2021) Cardamonin promotes the apoptosis and chemotherapy sensitivity to gemcitabine of pancreatic cancer through modulating the FOXO3a-FOXM1 axis. Dose Response 19(4):15593258211042164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jiang L, Cao XC, Cao JG et al (2013) Casticin induces ovarian cancer cell apoptosis by repressing FoxM1 through the activation of FOXO3a. Oncol Lett 5(5):1605–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zou Y, Tsai WB, Cheng CJ et al (2008) Forkhead box transcription factor FOXO3a suppresses estrogen-dependent breast cancer cell proliferation and tumorigenesis. Breast Cancer Res 10(1):R21

    Article  PubMed  PubMed Central  Google Scholar 

  88. Morelli C, Lanzino M, Garofalo C et al (2010) Akt2 inhibition enables the forkhead transcription factor FoxO3a to have a repressive role in estrogen receptor alpha transcriptional activity in breast cancer cells. Mol Cell Biol 30(3):857–870

    Article  CAS  PubMed  Google Scholar 

  89. Guo S, Sonenshein GE (2004) Forkhead box transcription factor FOXO3a regulates estrogen receptor alpha expression and is repressed by the Her-2/neu/phosphatidylinositol 3-kinase/Akt signaling pathway. Mol Cell Biol 24(19):8681–8690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Madureira PA, Varshochi R, Constantinidou D et al (2006) The Forkhead box M1 protein regulates the transcription of the estrogen receptor alpha in breast cancer cells. J Biol Chem 281(35):25167–25176

    Article  CAS  PubMed  Google Scholar 

  91. Jia X, Li C, Li L et al (2019) Neddylation inactivation facilitates FOXO3a nuclear export to suppress estrogen receptor transcription and improve fulvestrant sensitivity. Clin Cancer Res 25(12):3658–3672

    Article  CAS  PubMed  Google Scholar 

  92. Rosswag S, Thiede G, Sleeman JP, Thaler S (2020) RASSF1A suppresses estrogen-dependent breast cancer cell growth through inhibition of the yes-associated protein 1 (YAP1), inhibition of the forkhead box protein M1 (FOXM1), and activation of Forkhead box transcription factor 3A (FOXO3A). Cancers (Basel). 12(9):2689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gomez Tejeda Zanudo J, Mao P, Alcon C et al (2021) Cell Line-specific network models of ER(+) breast cancer identify potential PI3Kalpha inhibitor resistance mechanisms and drug combinations. Cancer Res 81(17):4603–4617

    Article  PubMed  Google Scholar 

  94. Andre F, Ciruelos E, Rubovszky G et al (2019) Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med 380(20):1929–1940

    Article  CAS  PubMed  Google Scholar 

  95. Zheng X, Zhai B, Koivunen P et al (2014) Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase. Genes Dev 28(13):1429–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tao B, Huang X, Shi J et al (2020) FTO interacts with FOXO3a to enhance its transcriptional activity and inhibits aggression in gliomas. Signal Transduct Target Ther 5(1):130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yu YS, Shin HR, Kim D et al (2020) Pontin arginine methylation by CARM1 is crucial for epigenetic regulation of autophagy. Nat Commun 11(1):6297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This research was supported by the Natural Science Foundation of Shandong Province (ZR2022MC125, ZR2022LZL006) and Yantai Nanshan University Youth Fund (NS2022Q14).

Author information

Authors and Affiliations

Authors

Contributions

ZD am mainly responsible for collecting literature, writing articles and sorting out materials. ZG, HL and DH were involved in the analysis of literature. WX and SC were involved in the production of pictures. WZ and SH were the creators and leaders of the project and directed thesis writing. All the authors have read and approved the final version of this review.

Corresponding authors

Correspondence to Wei Zhang or Shuhong Huang.

Ethics declarations

Competing interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Patient consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Guo, Z., Li, H. et al. FOXO3a-interacting proteins’ involvement in cancer: a review. Mol Biol Rep 51, 196 (2024). https://doi.org/10.1007/s11033-023-09121-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09121-w

Keywords

Navigation