Skip to main content
Log in

AMPK, a key molecule regulating aging-related myocardial ischemia-reperfusion injury

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Aging leads to the threat of more diseases to the biological anatomical structure and the decline of disease resistance, increasing the incidence and mortality of myocardial ischemia–reperfusion injury (MI/RI). Moreover, MI/RI promotes damage to an aging heart. Notably, 5′-adenosine monophosphate-activated protein kinase (AMPK) regulates cellular energy metabolism, stress response, and protein metabolism, participates in aging-related signaling pathways, and plays an essential role in ischemia–reperfusion (I/R) injury diseases. This study aims to introduce the aging theory, summarize the interaction between aging and MI/RI, and describe the crosstalk of AMPK in aging and MI/RI. We show how AMPK can offer protective effects against age-related stressors, lifestyle factors such as alcohol consumption and smoking, and hypertension. We also review some of the clinical prospects for the development of interventions that harness the effect of AMPK to treat MI/RI and other age-related cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang J, Ren D, Fedorova J, He Z, Li J (2020) SIRT1/SIRT3 modulates redox homeostasis during ischemia/reperfusion in the aging heart. Antioxid. Basel Switz. 9(9):858

    Article  CAS  Google Scholar 

  2. Zhang J, Huang L, Shi X, Yang L, Hua F, Ma J, Zhu W, Liu X, Xuan R, Shen Y, Liu J, Lai X, Yu P (2020) Metformin protects against myocardial ischemia-reperfusion injury and cell pyroptosis via AMPK/NLRP3 inflammasome pathway. Aging 12(23):24270–24287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li H, Yang D-H, Zhang Y, Zheng F, Gao F, Sun J, Shi G (2022) Geniposide suppresses NLRP3 inflammasome-mediated pyroptosis via the AMPK signaling pathway to mitigate myocardial ischemia/reperfusion injury. Chin Med 17(1):73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tian X, Huang Y, Zhang X, Fang R, Feng Y, Zhang W, Li L, Li T (2022) Salidroside attenuates myocardial ischemia/reperfusion injury via AMPK-induced suppression of endoplasmic reticulum stress and mitochondrial fission. Toxicol Appl Pharmacol 448:116093

    Article  CAS  PubMed  Google Scholar 

  5. Zhang J, He Z, Fedorova J, Logan C, Bates L, Davitt K, Le V, Murphy J, Li M, Wang M, Lakatta EG, Ren D, Li J (2021) Alterations in mitochondrial dynamics with age-related Sirtuin1/Sirtuin3 deficiency impair cardiomyocyte contractility. Aging Cell 20(7):e13419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jakovljevic DG (2018) Physical activity and cardiovascular aging: physiological and molecular insights. Exp Gerontol 109:67–74

    Article  CAS  PubMed  Google Scholar 

  7. Upadhya B, Taffet GE, Cheng CP, Kitzman DW (2015) Heart failure with preserved ejection fraction in the elderly: scope of the problem. J Mol Cell Cardiol 83:73–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kepchia D, Huang L, Currais A, Liang Z, Fischer W, Maher P (2022) The Alzheimer’s disease drug candidate J147 decreases blood plasma fatty acid levels via modulation of AMPK/ACC1 signaling in the liver. Biomed Pharmacother Biomedecine Pharmacother 147:112648

    Article  CAS  Google Scholar 

  9. Ericsson M, Steneberg P, Nyrén R, Edlund H (2021) AMPK activator O304 improves metabolic and cardiac function, and exercise capacity in aged mice. Commun Biol 4(1):1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee AK, Kim DH, Bang E, Choi YJ, Chung HY (2020) β-Hydroxybutyrate suppresses lipid accumulation in aged liver through GPR109A-mediated signaling. Aging Dis 11(4):777–790

    Article  PubMed  PubMed Central  Google Scholar 

  11. Basu SK, Gonit M, Salotti J, Chen J, Bhat A, Gorospe M, Viollet B, Claffey KP, Johnson PF (2018) A RAS-CaMKKβ-AMPKα2 pathway promotes senescence by licensing post-translational activation of C/EBPβ through a novel 3’UTR mechanism. Oncogene 37(26):3528–3548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rapaka D, Bitra VR, Challa SR, Adiukwu PC (2022) mTOR signaling as a molecular target for the alleviation of Alzheimer’s disease pathogenesis. Neurochem Int 155:105311

    Article  CAS  PubMed  Google Scholar 

  13. Zhang L, Zhou F, Yu X, Zhu Y, Zhou Y, Liu J, Liu Y, Ma Q, Zhang Y, Wang W, Chen N (2019) C/EBPα deficiency in podocytes aggravates podocyte senescence and kidney injury in aging mice. Cell Death Dis 10(10):684

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen L, Holder R, Porter C, Shah Z (2021) Vitamin D3 attenuates doxorubicin-induced senescence of human aortic endothelial cells by upregulation of IL-10 via the pAMPKα/Sirt1/Foxo3a signaling pathway. PLoS ONE 16(6):e0252816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cieslik KA, Taffet GE, Crawford JR, Trial J, Mejia Osuna P, Entman ML (2013) AICAR-dependent AMPK activation improves scar formation in the aged heart in a murine model of reperfused myocardial infarction. J Mol Cell Cardiol 63:26–36

    Article  CAS  PubMed  Google Scholar 

  16. Chen J, Gao J, Sun W, Li L, Wang Y, Bai S, Li X, Wang R, Wu L, Li H, Xu C (2016) Involvement of exogenous H2S in recovery of cardioprotection from ischemic post-conditioning via increase of autophagy in the aged hearts. Int J Cardiol 220:681–692

    Article  PubMed  Google Scholar 

  17. Lu Q, Liu J, Li X, Sun X, Zhang J, Ren D, Tong N, Li J (2020) Empagliflozin attenuates ischemia and reperfusion injury through LKB1/AMPK signaling pathway. Mol Cell Endocrinol 501:110642

    Article  CAS  PubMed  Google Scholar 

  18. Lee H, Zandkarimi F, Zhang Y, Meena JK, Kim J, Zhuang L, Tyagi S, Ma L, Westbrook TF, Steinberg GR, Nakada D, Stockwell BR, Gan B (2020) Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol 22(2):225–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang Y, Wang Y, Xu J, Tian F, Hu S, Chen Y, Fu Z (2019) Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways. J Pineal Res 66(2):e12542

    Article  PubMed  Google Scholar 

  20. Arnold M, Méndez-Carmona N, Gulac P, Wyss RK, Rutishauser N, Segiser A, Carrel T, Longnus S (2020) Mechanical postconditioning promotes glucose metabolism and AMPK activity in parallel with improved post-ischemic recovery in an isolated rat heart model of donation after circulatory death. Int J Mol Sci 21(3):964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Garcia D, Shaw RJ (2017) AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell 66(6):789–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gélinas R, Mailleux F, Dontaine J, Bultot L, Demeulder B, Ginion A, Daskalopoulos EP, Esfahani H, Dubois-Deruy E, Lauzier B, Gauthier C, Olson AK, Bouchard B, Des Rosiers C, Viollet B, Sakamoto K, Balligand J-L, Vanoverschelde J-L, Beauloye C, Horman S, Bertrand L (2018) AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation. Nat Commun 9(1):374

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  23. Xiao B, Sanders MJ, Carmena D, Bright NJ, Haire LF, Underwood E, Patel BR, Heath RB, Walker PA, Hallen S, Giordanetto F, Martin SR, Carling D, Gamblin SJ (2013) Structural basis of AMPK regulation by small molecule activators. Nat Commun 4:3017

    Article  ADS  PubMed  Google Scholar 

  24. Zadra G, Photopoulos C, Tyekucheva S, Heidari P, Weng QP, Fedele G, Liu H, Scaglia N, Priolo C, Sicinska E, Mahmood U, Signoretti S, Birnberg N, Loda M (2014) A Novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis. EMBO Mol Med 6(4):519–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hardie DG (2014) AMPK–sensing energy while talking to other signaling pathways. Cell Metab 20(6):939–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fogarty S, Hawley SA, Green KA, Saner N, Mustard KJ, Hardie DG (2010) Calmodulin-dependent protein kinase kinase-beta activates AMPK without forming a stable complex: synergistic effects of Ca2+ and AMP. Biochem J 426(1):109–118

    Article  CAS  PubMed  Google Scholar 

  27. Yan Y, Mukherjee S, Harikumar KG, Strutzenberg TS, Zhou XE, Suino-Powell K, Xu T-H, Sheldon RD, Lamp J, Brunzelle JS, Radziwon K, Ellis A, Novick SJ, Vega IE, Jones RG, Miller LJ, Xu HE, Griffin PR, Kossiakoff AA, Melcher K (2021) Structure of an AMPK complex in an inactive. ATP-Bound State Science 373(6553):413–419

    CAS  PubMed  Google Scholar 

  28. Reznick RM, Zong H, Li J, Morino K, Moore IK, Yu HJ, Liu Z-X, Dong J, Mustard KJ, Hawley SA, Befroy D, Pypaert M, Hardie DG, Young LH, Shulman GI (2007) Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab 5(2):151–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ducommun S, Ford RJ, Bultot L, Deak M, Bertrand L, Kemp BE, Steinberg GR, Sakamoto K (2014) Enhanced Activation of Cellular AMPK by Dual-Small Molecule Treatment: AICAR and A769662. Am J Physiol Endocrinol Metab 306(6):E688-696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gómez-Galeno JE, Dang Q, Nguyen TH, Boyer SH, Grote MP, Sun Z, Chen M, Craigo WA, van Poelje PD, MacKenna DA, Cable EE, Rolzin PA, Finn PD, Chi B, Linemeyer DL, Hecker SJ, Erion MD (2010) A potent and selective AMPK activator that inhibits de novo lipogenesis. ACS Med Chem Lett 1(9):478–482

    Article  PubMed  PubMed Central  Google Scholar 

  31. Salminen A, Kaarniranta K, Kauppinen A (2016) Age-related changes in AMPK activation: role for AMPK phosphatases and inhibitory phosphorylation by upstream signaling pathways. Ageing Res Rev 28:15–26

    Article  CAS  PubMed  Google Scholar 

  32. Zhu J, Wang Y-F, Chai X-M, Qian K, Zhang L-W, Peng P, Chen P-M, Cao J-F, Qin Z-H, Sheng R, Xie H (2020) Exogenous NADPH ameliorates myocardial ischemia-reperfusion injury in rats through activating AMPK/mTOR pathway. Acta Pharmacol Sin 41(4):535–545

    Article  CAS  PubMed  Google Scholar 

  33. Gibb AA, Elrod JW (2019) Not just correlative: a new pathway defines how an ALDH2 SNP contributes to atherosclerosis. J Clin Invest 129(1):63–65

    Article  PubMed  Google Scholar 

  34. Luizon MR, Eckalbar WL, Wang Y, Jones SL, Smith RP, Laurance M, Lin L, Gallins PJ, Etheridge AS, Wright F, Zhou Y, Molony C, Innocenti F, Yee SW, Giacomini KM, Ahituv N (2016) Genomic characterization of metformin hepatic response. PLoS Genet 12(11):e1006449

    Article  PubMed  PubMed Central  Google Scholar 

  35. Qin S, Ingle JN, Kim W, Gao H, Weinshilboum RM, Wang L (2021) ZNF423 Modulates the AMP-activated protein kinase pathway and metformin response in a single nucleotide polymorphisms, estrogen and selective estrogen receptor modulator dependent fashion. Pharmacogenet Genomics 31(7):155–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu Z, Zhou X, Wang J, Yu F, Feng X, Huang Q, Liao D, Li X, Zhan Q, Liu Y, Yang Q, Jin X, Xia J (2020) Association of AMPK pathway-related gene polymorphisms with symptomatic intracranial atherosclerotic stenosis in a chinese han population. Genet Test Mol Biomark 24(5):230–238

    Article  CAS  Google Scholar 

  37. Tang K, Qin W, Wei R, Jiang Y, Fan L, Wang Z, Tan N (2022) Ginsenoside Rd ameliorates high glucose-induced retinal endothelial injury through AMPK-STRT1 interdependence. Pharmacol Res 179:106123

    Article  CAS  PubMed  Google Scholar 

  38. Aguilar-Recarte D, Barroso E, Zhang M, Rada P, Pizarro-Delgado J, Peña L, Palomer X, Valverde ÁM, Wahli W, Vázquez-Carrera M (2023) A positive feedback loop between AMPK and GDF15 promotes metformin antidiabetic effects. Pharmacol Res 187:106578

    Article  CAS  PubMed  Google Scholar 

  39. Wan Z, Durrer C, Mah D, Simtchouk S, Robinson E, Little JP (2014) Reduction of AMPK activity and altered MAPKs signalling in peripheral blood mononuclear cells in response to acute glucose ingestion following a short-term high fat diet in young healthy men. Metabolism 63(9):1209–1216

    Article  CAS  PubMed  Google Scholar 

  40. Zhang E, Jin L, Wang Y, Tu J, Zheng R, Ding L, Fang Z, Fan M, Al-Abdullah I, Natarajan R, Ma K, Wang Z, Riggs AD, Shuck SC, Yang L, Huang W (2022) Intestinal AMPK modulation of microbiota mediates crosstalk with brown Fat to control thermogenesis. Nat Commun 13(1):1135

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Luo H, Lan C, Fan C, Gong X, Chen C, Yu C, Wang J, Luo X, Hu C, Jose PA, Xu Z, Zeng C (2022) Down-regulation of AMPK/PPARδ signalling promotes endoplasmic reticulum stress-induced endothelial dysfunction in adult rat offspring exposed to maternal diabetes. Cardiovasc Res 118(10):2304–2316

    Article  CAS  PubMed  Google Scholar 

  42. Wang H, Wang L, Hu F, Wang P, Xie Y, Li F, Guo B (2022) Neuregulin-4 attenuates diabetic cardiomyopathy by regulating autophagy via the AMPK/mTOR signalling pathway. Cardiovasc Diabetol 21(1):205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Madonna R, Moscato S, Cufaro MC, Pieragostino D, Mattii L, Del Boccio P, Ghelardoni S, Zucchi R, De Caterina R (2023) Empagliflozin inhibits excessive autophagy through the AMPK/GSK3β signalling pathway in diabetic cardiomyopathy. Cardiovasc Res 119(5):1175–1189

    Article  CAS  PubMed  Google Scholar 

  44. Koska J, Lopez L, D’Souza K, Osredkar T, Deer J, Kurtz J, Salbe AD, Harman SM, Reaven PD (2018) Effect of liraglutide on dietary lipid-induced insulin resistance in humans. Diabetes Obes Metab 20(1):69–76

    Article  CAS  PubMed  Google Scholar 

  45. Pyo Y-H, Lee D-B, Lee Y-W, Yoon S-M, Lee A-R (2022) Hypoglycemic and hypolipogenic action of acetic acid and monascus-fermented grain vinegar: a comparative study. J Med Food 25(4):418–425

    Article  CAS  PubMed  Google Scholar 

  46. Ballantyne CM, Davidson MH, Macdougall DE, Bays HE, Dicarlo LA, Rosenberg NL, Margulies J, Newton RS (2013) Efficacy and safety of a novel dual modulator of adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase in patients with hypercholesterolemia: results of a multicenter, randomized, double-blind, placebo-controlled. Parallel-Group Trial J Am Coll Cardiol 62(13):1154–1162

    Article  CAS  PubMed  Google Scholar 

  47. Chao Y-M, Wu KLH, Tsai P-C, Tain Y-L, Leu S, Lee W-C, Chan JYH (2020) Anomalous AMPK-regulated angiotensin AT1R expression and SIRT1-mediated mitochondrial biogenesis at RVLM in hypertension programming of offspring to maternal high fructose exposure. J Biomed Sci 27(1):68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Alshahrani MY, Ebrahim HA, Alqahtani SM, Bayoumy NM, Kamar SS, ShamsEldeen AM, Haidara MA, Al-Ani B, Albawardi A (2023) Metformin suppresses thioacetamide-induced chronic kidney disease in association with the upregulation of AMPK and downregulation of oxidative stress and inflammation as well as dyslipidemia and hypertension. Mol Basel Switz 28(6):2756

    CAS  Google Scholar 

  49. Dolinsky VW, Morton JS, Oka T, Robillard-Frayne I, Bagdan M, Lopaschuk GD, Des Rosiers C, Walsh K, Davidge ST, Dyck JRB (2010) Calorie restriction prevents hypertension and cardiac hypertrophy in the spontaneously hypertensive rat. Hypertension 56(3):412–421

    Article  CAS  PubMed  Google Scholar 

  50. Wang Y, Zhang P, Wang T, Yao D, Shi Y, Liu J, Wang B, Wei H, Liu W, Xu C-B, Wang C (2022) DMSO-soluble smoking particles up-regulate the vascular endothelin receptors through AMPK-SIRT1 and MAPK pathways. Chem Biol Interact 368:110203

    Article  CAS  PubMed  Google Scholar 

  51. Morsch ALBC, Wisniewski E, Luciano TF, Comin VH, de Silveira GB, de Marques SO, Thirupathi A, Silveira Lock PC, De Souza CT (2019) Cigarette smoke exposure induces ROS-mediated autophagy by regulating sestrin, AMPK, and mTOR level in mice. Redox Rep Commun Free Radic Res 24(1):27–33

    CAS  Google Scholar 

  52. Ge J, Xu W-J, Chen H-F, Dong Z-H, Liu W, Nian F-Z, Liu J (2022) Induction mechanism of cigarette smoke components (CSCs) on dyslipidemia and hepatic steatosis in rats. Lipids Health Dis 21(1):117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shin J-M, Park J-H, Yang H-W, Lee H-M, Park I-H (2020) Cigarette smoke extract inhibits cell migration and contraction via the reactive oxygen species/adenosine monophosphate-activated protein kinase pathway in nasal fibroblasts. Int Forum Allergy Rhinol 10(3):356–363

    Article  PubMed  Google Scholar 

  54. Furlong HC, Stämpfli MR, Gannon AM, Foster WG (2015) Cigarette smoke exposure triggers the autophagic cascade via activation of the AMPK pathway in mice. Biol Reprod 93(4):93

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tian G, Li J, Zhou L (2023) Ginsenoside Rg1 regulates autophagy and endoplasmic reticulum stress via the AMPK/mTOR and PERK/ATF4/CHOP pathways to alleviate alcohol-induced myocardial injury. Int J Mol Med 52(1):56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hong-Brown LQ, Brown CR, Kazi AA, Huber DS, Pruznak AM, Lang CH (2010) Alcohol and PRAS40 knockdown decrease mTOR activity and protein synthesis via AMPK signaling and changes in mTORC1 interaction. J Cell Biochem 109(6):1172–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang L, Wang S, Ma J, Li J, Yang J, Bucala R, Ren J (2019) CD74 knockout attenuates alcohol intake-induced cardiac dysfunction through AMPK-Skp2-mediated regulation of autophagy. Biochim Biophys Acta Mol Basis Dis 1865(9):2368–2378

    Article  CAS  PubMed  Google Scholar 

  58. Li R-L, Wu S-S, Wu Y, Wang X-X, Chen H-Y, Xin J-J, Li H, Lan J, Xue K-Y, Li X, Zhuo C-L, Cai Y-Y, He J-H, Zhang H-Y, Tang C-S, Wang W, Jiang W (2018) Irisin alleviates pressure overload-induced cardiac hypertrophy by inducing protective autophagy via mTOR-independent activation of the AMPK-ULK1 pathway. J Mol Cell Cardiol 121:242–255

    Article  CAS  PubMed  Google Scholar 

  59. Qi X, Wang J (2020) Melatonin improves mitochondrial biogenesis through the AMPK/PGC1α pathway to attenuate ischemia/reperfusion-induced myocardial damage. Aging 12(8):7299–7312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yu Y, Zhao Y, Teng F, Li J, Guan Y, Xu J, Lv X, Guan F, Zhang M, Chen L (2018) Berberine improves cognitive deficiency and muscular dysfunction via activation of the AMPK/SIRT1/PGC-1a pathway in skeletal muscle from naturally aging rats. J Nutr Health Aging 22(6):710–717

    Article  CAS  PubMed  Google Scholar 

  61. Ning Z, Li Y, Liu D, Owoicho Orgah J, Zhu J, Wang Y, Zhu Y (2018) Tetrahydroxystilbene glucoside delayed senile symptoms in old mice via regulation of the AMPK/SIRT1/PGC-1α signaling cascade. Gerontology 64(5):457–465

    Article  CAS  PubMed  Google Scholar 

  62. Cantó C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M, Zierath JR, Auwerx J (2010) Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 11(3):213–219

    Article  PubMed  PubMed Central  Google Scholar 

  63. Um J-H, Park S-J, Kang H, Yang S, Foretz M, McBurney MW, Kim MK, Viollet B, Chung JH (2010) AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 59(3):554–563

    Article  CAS  PubMed  Google Scholar 

  64. Cheng H-L, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, Bronson R, Appella E, Alt FW, Chua KF (2003) Developmental defects and P53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 100(19):10794–10799

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yarmohammadi F, Rezaee R, Karimi G (2021) Natural compounds against doxorubicin-induced cardiotoxicity: a review on the involvement of Nrf2/ARE signaling pathway. Phytother Res PTR 35(3):1163–1175

    Article  CAS  PubMed  Google Scholar 

  66. Ping Z, Zhang L, Cui Y, Chang Y, Jiang C, Meng Z, Xu P, Liu H, Wang D, Cao X (2015) The protective effects of salidroside from exhaustive exercise-induced heart injury by enhancing the PGC-1 α -NRF1/NRF2 pathway and mitochondrial respiratory function in rats. Oxid Med Cell Longev 2015:876825

    Article  PubMed  PubMed Central  Google Scholar 

  67. Xu L, Nagata N, Ota T (2018) Glucoraphanin: a broccoli sprout extract that ameliorates obesity-induced inflammation and insulin resistance. Adipocyte 7(3):218–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30(2):214–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Su Y, Wang T, Wu N, Li D, Fan X, Xu Z, Mishra SK, Yang M (2019) Alpha-ketoglutarate extends drosophila lifespan by inhibiting mTOR and activating AMPK. Aging 11(12):4183–4197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen X, Li X, Zhang W, He J, Xu B, Lei B, Wang Z, Cates C, Rousselle T, Li J (2018) Activation of AMPK inhibits inflammatory response during hypoxia and reoxygenation through modulating JNK-mediated NF-κB pathway. Metabolism 83:256–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nakamura T, Naguro I, Ichijo H (2019) Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochim Biophys Acta Gen Subj 1863(9):1398–1409

    Article  CAS  PubMed  Google Scholar 

  72. Fang J, Wei Z, Zheng D, Ying T, Hong H, Hu D, Lin Y, Jiang X, Wu L, Lan T, Yang Z, Zhou X, Chen L (2020) Recombinant extracellular domain (p75ECD) of the neurotrophin receptor P75 attenuates myocardial ischemia-reperfusion injury by inhibiting the p-JNK/caspase-3 signaling pathway in rat microvascular pericytes. J Am Heart Assoc 9(13):e016047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tan J, Shen J, Zhu H, Gong Y, Zhu H, Li J, Lin S, Wu G, Sun T (2020) miR-378a-3p inhibits ischemia/reperfusion-induced apoptosis in H9C2 cardiomyocytes by targeting TRIM55 via the DUSP1-JNK1/2 signaling pathway. Aging 12(10):8939–8952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li Y, Ren X, Lio C, Sun W, Lai K, Liu Y, Zhang Z, Liang J, Zhou H, Liu L, Huang H, Ren J, Luo P (2018) A chlorogenic acid-phospholipid complex ameliorates post-myocardial infarction inflammatory response mediated by mitochondrial reactive oxygen species in SAMP8 mice. Pharmacol Res 130:110–122

    Article  CAS  PubMed  Google Scholar 

  75. Yan J, Duan J, Wu X, Guo C, Yin Y, Zhu Y, Hu T, Wei G, Wen A, Xi M (2015) Total saponins from aralia taibaiensis protect against myocardial ischemia/reperfusion injury through AMPK pathway. Int J Mol Med 36(6):1538–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nam D-H, Han J-H, Kim S, Shin Y, Lim JH, Choi HC, Woo C-H (2016) Activated protein C prevents methylglyoxal-induced endoplasmic reticulum stress and cardiomyocyte apoptosis via regulation of the AMP-activated protein kinase signaling pathway. Biochem Biophys Res Commun 480(4):622–628

    Article  CAS  PubMed  Google Scholar 

  77. Lekli I, Szabo G, Juhasz B, Das S, Das M, Varga E, Szendrei L, Gesztelyi R, Varadi J, Bak I, Das DK, Tosaki A (2008) Protective mechanisms of resveratrol against ischemia-reperfusion-induced damage in hearts obtained from Zucker obese rats: the role of GLUT-4 and endothelin. Am J Physiol Heart Circ Physiol 294(2):H859-866

    Article  CAS  PubMed  Google Scholar 

  78. Chung JH, Manganiello V, Dyck JRB (2012) Resveratrol as a calorie restriction mimetic: therapeutic implications. Trends Cell Biol 22(10):546–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S, Towler MC, Brown LJ, Ogunbayo OA, Evans AM, Hardie DG (2010) Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab 11(6):554–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Park S-J, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL, Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148(3):421–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang Y, Yang Z, Zheng G, Yu L, Yin Y, Mu N, Ma H (2019) Metformin promotes autophagy in ischemia/reperfusion myocardium via cytoplasmic AMPKα1 and nuclear AMPKα2 pathways. Life Sci 225:64–71

    Article  CAS  PubMed  Google Scholar 

  82. Di Cristofano A (2017) SGK1: the dark side of PI3K signaling. Curr Top Dev Biol 123:49–71

    Article  PubMed  Google Scholar 

  83. Toldo S, Mauro AG, Cutter Z, Abbate A (2018) Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 315(6):H1553–H1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shen S, He F, Cheng C, Xu B, Sheng J (2021) Uric acid aggravates myocardial ischemia-reperfusion injury via ROS/NLRP3 pyroptosis pathway. Biomed Pharmacother Biomedecine Pharmacother 133:110990

    Article  CAS  Google Scholar 

  85. La Russa D, Marrone A, Mandalà M, Macirella R, Pellegrino D (2020) Antioxidant/anti-inflammatory effects of caloric restriction in an aged and obese rat model: the role of adiponectin. Biomedicines 8(12):E532

    Article  Google Scholar 

  86. Niederberger E, King TS, Russe OQ, Geisslinger G (2015) Activation of AMPK and its impact on exercise capacity. Sports Med Auckl NZ 45(11):1497–1509

    Article  Google Scholar 

  87. Ma Z, Qi J, Gao L, Zhang J (2020) Role of exercise on alleviating pressure overload-induced left ventricular dysfunction and remodeling via AMPK-dependent autophagy activation. Int Heart J 61(5):1022–1033

    Article  CAS  PubMed  Google Scholar 

  88. Ouyang C, Huang L, Ye X, Ren M, Han Z (2021) Overexpression of miR-1298 attenuates myocardial ischemia-reperfusion injury by targeting PP2A. J Thromb Thrombolysis. https://doi.org/10.1007/s11239-021-02540-1

    Article  PubMed  Google Scholar 

  89. Zhu Q, Hu F (2019) Antagonism of miR-429 ameliorates anoxia/reoxygenation injury in cardiomyocytes by enhancing MO25/LKB1/AMPK mediated autophagy. Life Sci 235:116842

    Article  CAS  PubMed  Google Scholar 

  90. Guo Y, Gao J, Liu Y, Zhang X, An X, Zhou J, Su P (2021) miR-451 on myocardial ischemia-reperfusion in rats by regulating AMPK signaling pathway. BioMed Res Int 2021:9933998

    Article  PubMed  PubMed Central  Google Scholar 

  91. Feng R, Ullah M, Chen K, Ali Q, Lin Y, Sun Z (2020) Stem cell-derived extracellular vesicles mitigate ageing-associated arterial stiffness and hypertension. J Extracell Vesicles 9(1):1783869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Qing Y, Dong X, Hongli L, Yanhui L (2018) Berberine promoted myocardial protection of postoperative patients through regulating myocardial autophagy. Biomed Pharmacother Biomedecine Pharmacother 105:1050–1053

    Article  CAS  Google Scholar 

  93. Zhao M, Li XW, Chen DZ, Hao F, Tao SX, Yu HY, Cheng R, Liu H (2019) Neuro-protective role of metformin in patients with acute stroke and type 2 diabetes mellitus via AMPK/mammalian target of rapamycin (mTOR) signaling pathway and oxidative stress. Med Sci Monit Int Med J Exp Clin Res 25:2186–2194

    CAS  Google Scholar 

  94. Abdallah MS, Alarfaj SJ, Saif DS, El-Naggar ME, Elsokary MA, Elsawah HK, Abdelsattar Zaki S, Wahsh EA, Abo Mansour HE, Mosalam EM (2021) The AMPK modulator metformin as adjunct to methotrexate in patients with rheumatoid arthritis: a proof-of-concept, randomized, double-blind. Placebo-Controll Trial Int Immunopharmacol 95:107575

    Article  CAS  PubMed  Google Scholar 

  95. de Marañón AM, Díaz-Pozo P, Canet F, Díaz-Morales N, Abad-Jiménez Z, López-Domènech S, Vezza T, Apostolova N, Morillas C, Rocha M, Víctor VM (2022) Metformin modulates mitochondrial function and mitophagy in peripheral blood mononuclear cells from type 2 diabetic patients. Redox Biol 53:102342

    Article  PubMed  PubMed Central  Google Scholar 

  96. Guevara-Cruz M, Godinez-Salas ET, Sanchez-Tapia M, Torres-Villalobos G, Pichardo-Ontiveros E, Guizar-Heredia R, Arteaga-Sanchez L, Gamba G, Mojica-Espinosa R, Schcolnik-Cabrera A, Granados O, López-Barradas A, Vargas-Castillo A, Torre-Villalvazo I, Noriega LG, Torres N, Tovar AR (2020) Genistein stimulates insulin sensitivity through gut microbiota reshaping and skeletal muscle AMPK activation in obese subjects. BMJ Open Diab Res Care 8(1):e000948

    Article  PubMed  PubMed Central  Google Scholar 

  97. Abedimanesh N, Motlagh B, Abedimanesh S, Bathaie SZ, Separham A, Ostadrahimi A (2020) Effects of crocin and saffron aqueous extract on gene expression of SIRT1, AMPK, LOX1, NF-κB, and MCP-1 in patients with coronary artery disease: a randomized placebo-controlled clinical trial. Phytother Res PTR 34(5):1114–1122

    Article  CAS  PubMed  Google Scholar 

  98. Wang X, Lu Y, Tuo Z, Zhou H, Zhang Y, Cao Z, Peng L, Yu D, Bi L (2021) Role of SIRT1/AMPK signaling in the proliferation, migration and invasion of renal cell carcinoma cells. Oncol Rep 45(6):109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu CL, Qiang L, Han W, Ming M, Viollet B, He YY (2013) Role of AMPK in UVB-induced DNA damage repair and growth control. Oncogene 32(21):2682–2689

    Article  CAS  PubMed  Google Scholar 

  100. Ma Y, Chapman J, Levine M, Polireddy K, Drisko J, Chen Q (2014) High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci. Transl. Med. 6(222):222ra18

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Fund of Role and mechanism of stem cell exosome miR-let-7g targeting inhibition of NAT1/IGF2/IGF2R pathway; Foundation of Department of finance of Jilin Province, 2020 Jilin Province Health special discipline talent development project, Number: 2020SCZT018/fund of Study on the mechanism of action of Shexiang xinnaole tablet in coronary heart disease and the key technology of quality improvement; Foundation of Jilin Provincial Department of science and technology, Number: 20190304103YY

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunli Song.

Ethics declarations

Conflicts of interest

The authors have not disclosed any competing interests.

Ethical approval

This article does not contain any studies with animals performed by any of the authors and does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 kb)

Supplementary file2 (DOCX 517 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Guo, Z. & Song, C. AMPK, a key molecule regulating aging-related myocardial ischemia-reperfusion injury. Mol Biol Rep 51, 257 (2024). https://doi.org/10.1007/s11033-023-09050-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09050-8

Keywords

Navigation