Skip to main content
Log in

CCT2 prevented β-catenin proteasomal degradation to sustain cancer stem cell traits and promote tumor progression in epithelial ovarian cancer

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Epithelial ovarian cancer (EOC) is featured by rapid progression and dismal outcomes clinically. Chaperonin Containing TCP1 Subunit 2 (CCT2) was identified as a crucial regulator for tumor progression, however, its exact role in EOC remained largely unknown.

Methods

CCT2 expression and prognostic value in EOC samples were assessed according to TCGA dataset. Proliferation and mobility potentials were assessed by CCK8, colony-formation, wound healing, and Transwell assays. Cancer stem cell (CSC) traits were evaluated by RT-PCR, WB assays, sphere-forming assay and chemoresistance analysis. Bioinformatic analysis, co-IP assays and ubiquitin assays were performed to explore the mechanisms of CCT2 on EOC cells.

Results

CCT2 highly expressed in EOC tissues and predicted poor prognosis of EOC patients by TCGA analysis. Silencing CCT2 significantly restrained cell proliferation, migration, and invasion. Moreover, CCT2 could effectively trigger epithelial-mesenchymal transition to confer extensive invasion potentials to EOC cells, Importantly, CCT2 positively correlated with CSC markers in EOC, and CCT2 knockdown impaired CSC traits and sensitize EOC cells to conventional chemotherapy regimens. Contrarily, overexpressing CCT2 achieved opposite results. Mechanistically, CCT2 exerted its pro-oncogene function by triggering Wnt/β-catenin signaling. Specifically, CCT2 could recruit HSP105-PP2A complex, a well-established dephosphorylation complex, to β-catenin via direct physical interaction to prevent phosphorylation-induced proteasomal degradation of β-catenin, resulting in intracellular accumulation of active β-catenin and increased signaling activity.

Conclusions

CCT2 was a novel promotor for EOC progression and a crucial sustainer for CSC traits mainly by preventing β-catenin degradation. Targeting CCT2 may represent a promising therapeutic strategy for EOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Raw data are available from the corresponding author upon reasonable request.

References

  1. Truxova I, Cibula D, Spisek R, Fucikova J (2023) Targeting tumor-associated macrophages for successful immunotherapy of ovarian carcinoma. J Immunother Cancer 11(2):e005968

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kaufhold S, Garbán H, Bonavida B (2016) Yin Yang 1 is associated with cancer stem cell transcription factors (SOX2, OCT4, BMI1) and clinical implication. J Exp Clin Cancer Res 35:84

    Article  PubMed  PubMed Central  Google Scholar 

  3. Martins FC, Couturier DL, de Santiago I, Sauer CM, Vias M, Angelova M et al (2022) Clonal somatic copy number altered driver events inform drug sensitivity in high-grade serous ovarian cancer. Nat Commun 13(1):6360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xuan Y, Wang H, Yung MM, Chen F, Chan WS, Chan YS et al (2022) SCD1/FADS2 fatty acid desaturases equipoise lipid metabolic activity and redox-driven ferroptosis in ascites-derived ovarian cancer cells. Theranostics 12(7):3534–3552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Muñoz-Galván S, Felipe-Abrio B, García-Carrasco M, Domínguez-Piñol J, Suarez-Martinez E, Verdugo-Sivianes EM et al (2019) New markers for human ovarian cancer that link platinum resistance to the cancer stem cell phenotype and define new therapeutic combinations and diagnostic tools. J Exp Clin Cancer Res 38(1):234

    Article  PubMed  PubMed Central  Google Scholar 

  6. Huang T, Song X, Xu D, Tiek D, Goenka A, Wu B et al (2020) Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics 10(19):8721–8743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Macario AJL, Conway de Macario E (2022) Chaperonins in cancer: expression, function, and migration in extracellular vesicles. Semin Cancer Biol 86(Pt 1):26–35

    Article  CAS  PubMed  Google Scholar 

  8. Showalter AE, Martini AC, Nierenberg D, Hosang K, Fahmi NA, Gopalan P et al (2020) Investigating Chaperonin-Containing TCP-1 subunit 2 as an essential component of the chaperonin complex for tumorigenesis. Sci Rep 10(1):798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang Z, Klionsky DJ (2022) CCT2, a newly identified aggrephagy receptor in mammals, specifically mediates the autophagic clearance of solid protein aggregates. Autophagy 18(7):1483–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zang Y, Jin M, Wang H, Cui Z, Kong L, Liu C et al (2016) Staggered ATP binding mechanism of eukaryotic chaperonin TRiC (CCT) revealed through high-resolution cryo-EM. Nat Struct Mol Biol 23(12):1083–1091

    Article  CAS  PubMed  Google Scholar 

  11. Zheng J, Lu T, Zhou C, Cai J, Zhang X, Liang J et al (2020) Extracellular vesicles derived from human umbilical cord mesenchymal stem cells protect liver ischemia/reperfusion injury by reducing CD154 expression on CD4+ T cells via CCT2. Adv Sci (Weinh) 7(18):1903746

    Article  CAS  PubMed  Google Scholar 

  12. Park SH, Jeong S, Kim BR, Jeong YA, Kim JL, Na YJ et al (2020) Activating CCT2 triggers Gli-1 activation during hypoxic condition in colorectal cancer. Oncogene 39(1):136–150

    Article  CAS  PubMed  Google Scholar 

  13. Yang W, Xia Y, Qian X, Wang M, Zhang X, Li Y et al (2019) Co-expression network analysis identified key genes in association with mesenchymal stem cell osteogenic differentiation. Cell Tissue Res 378(3):513–529

    Article  CAS  PubMed  Google Scholar 

  14. Fan L, Lei H, Zhang S, Peng Y, Fu C, Shu G, Yin G (2020) Non-canonical signaling pathway of SNAI2 induces EMT in ovarian cancer cells by suppressing miR-222-3p transcription and upregulating PDCD10. Theranostics 10(13):5895–5913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brown Y, Hua S, Tanwar PS (2023) Extracellular matrix in high-grade serous ovarian cancer: advances in understanding of carcinogenesis and cancer biology. Matrix Biol 118:16–46

    Article  CAS  PubMed  Google Scholar 

  16. Li QJ, Wu ZL, Wang J, Jiang J, Lin B (2023) An EMT-based gene signature enhances the clinical understanding and prognostic prediction of patients with ovarian cancers. J Ovarian Res 16(1):51

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hassan AA, Artemenko M, Tang MKS, Shi Z, Chen LY, Lai HC et al (2022) Ascitic fluid shear stress in concert with hepatocyte growth factor drive stemness and chemoresistance of ovarian cancer cells via the c-Met-PI3K/Akt-miR-199a-3p signaling pathway. Cell Death Dis 13(6):537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liang X, Yang Y, Huang C, Ye Z, Lai W, Luo J et al (2023) cRGD-targeted heparin nanoparticles for effective dual drug treatment of cisplatin-resistant ovarian cancer. J Control Release S0168–3659(23):00184

    Google Scholar 

  19. Ryu KJ, Park SM, Park SH, Kim IK, Han H, Kim HJ et al (2019) p38 Stabilizes snail by suppressing DYRK2-mediated phosphorylation that is required for GSK3β-βTrCP-induced snail degradation. Cancer Res 79(16):4135–4148

    Article  CAS  PubMed  Google Scholar 

  20. Sun R, Yuan L, Jiang Y, Wan Y, Ma X, Yang J et al (2023) ALKBH5 activates FAK signaling through m6A demethylation in ITGB1 mRNA and enhances tumor-associated lymphangiogenesis and lymph node metastasis in ovarian cancer. Theranostics 13(2):833–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wen Y, Hou Y, Yi X, Sun S, Guo J, He X et al (2021) EZH2 activates CHK1 signaling to promote ovarian cancer chemoresistance by maintaining the properties of cancer stem cells. Theranostics 11(4):1795–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mazzoldi EL, Pavan S, Pilotto G, Leone K, Pagotto A, Frezzini S et al (2019) A juxtacrine/paracrine loop between C-Kit and stem cell factor promotes cancer stem cell survival in epithelial ovarian cancer. Cell Death Dis 10(6):412. https://doi.org/10.1038/s41419-019-1656-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Prasetyanti PR, Medema JP (2017) Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer 16(1):41

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yang WJ, Sun YF, Jin AL, Lv LH, Zhu J, Wang BL et al (2020) BCL11B suppresses tumor progression and stem cell traits in hepatocellular carcinoma by restoring p53 signaling activity. Cell Death Dis 11(10):895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Varier L, Sundaram SM, Gamit N, Warrier S (2023) An overview of ovarian cancer: the role of cancer stem cells in chemoresistance and a precision medicine approach targeting the Wnt pathway with the antagonist sFRP4. Cancers (Basel) 15(4):1275

    Article  CAS  PubMed  Google Scholar 

  26. Motohara T, Katabuchi H (2019) Ovarian cancer stemness: biological and clinical implications for metastasis and chemotherapy resistance. Cancers (Basel) 11(7):907

    Article  CAS  PubMed  Google Scholar 

  27. Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149(6):1192–1205

    Article  CAS  PubMed  Google Scholar 

  28. Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L et al (2021) Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther 6(1):307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang X, Sun M, Jiao Y, Lin B, Yang Q (2022) PHGDH inhibitor CBR-5884 inhibits epithelial ovarian cancer progression via ROS/Wnt/β-catenin pathway and plays a synergistic role with PARP inhibitor olaparib. Oxid Med Cell Longev 2022:9029544

    PubMed  PubMed Central  Google Scholar 

  30. Xu W, Wu C, Zhu X, Wu J, Zhang Z, Wei Z et al (2022) UC-MSCs promote frozen-thawed ovaries angiogenesis via activation of the Wnt/β-catenin pathway in vitro ovarian culture system. Stem Cell Res Ther 13(1):296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. To SKY, Tang MKS, Tong Y, Zhang J, Chan KKL, Ip PPC et al (2022) A Selective β-catenin-metadherin/CEACAM1-CCL3 axis mediates metastatic heterogeneity upon tumor–macrophage interaction. Adv Sci (Weinh) 9(16):e2103230

    Article  PubMed  Google Scholar 

  32. Le Rolle M, Massa F, Siggers P, Turchi L, Loubat A, Koo BK et al (2021) Arrest of WNT/β-catenin signaling enables the transition from pluripotent to differentiated germ cells in mouse ovaries. Proc Natl Acad Sci USA 118(30):e2023376118

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kotrbová A, Ovesná P, Gybel’ T, Radaszkiewicz T, Bednaříková M, Hausnerová J et al (2020) WNT signaling inducing activity in ascites predicts poor outcome in ovarian cancer. Theranostics 10(2):537–552

    Article  PubMed  PubMed Central  Google Scholar 

  34. Huang Z, Li Q, Luo K, Zhang Q, Geng J, Zhou X et al (2019) miR-340-FHL2 axis inhilits cell growth and metastasis in ovarian cancer. Cell Death Dis 10(5):372

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

JC designed, drafted, and supervised the project. QH performed statistical analyses. CZ and DJ research literatures. All authors revised the manuscript.

Corresponding author

Correspondence to Jiayao Chen.

Ethics declarations

Conflict of interest

The authors have declared that no competing interest exists.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jiayao Chen is also the first author of this work.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Hu, Q., Zhou, C. et al. CCT2 prevented β-catenin proteasomal degradation to sustain cancer stem cell traits and promote tumor progression in epithelial ovarian cancer. Mol Biol Rep 51, 54 (2024). https://doi.org/10.1007/s11033-023-09047-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09047-3

Keywords

Navigation