Skip to main content

Advertisement

Log in

Genetic polymorphisms in VEGFA and VEGFR2 genes associated with coronary heart disease susceptibility and severity

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

​Vascular endothelial growth factor A (VEGFA) is well acknowledged as a powerful angiogenesis-promoting agent mainly through its receptor VEGFR2. Ischemia stimulates VEGFA/VEGFR2 signaling pathway and elevated serum levels of VEGFA were detected in coronary heart disease (CHD) patients. The goal of the current study is to determine how four SNPs in the genes for VEGFA (rs3025039 and rs699947) and VEGFR2 (rs2305948 and rs1870377) contribute to the development of CHD. We also wanted to use the Gensini score to confirm if these four SNPs have an effect on the severity of coronary lesions.

Methods

In this case-control research, we used the restriction fragment length polymorphism of the polymerase chain reaction to genotype 239 CHD patients and 200 controls. Age, sex, smoking behavior, and obesity were taken into account in the statistical analysis.

Results

Two VEGFA/VEFGR2 signaling pathway SNPs (rs699947 and rs1870377) were found to be associated with CHD (C vs. A, P = 0.002; OR = 1.47 (1.12–1.93); A vs. T, P = 0.001; OR = 1.58 (1.17–2.13) respectively). The rs2305948 showed no allelic associations with CHD susceptibility, although we noticed a slight association under the recessive model of rs3025039 TT genotype (p = 0.023; OR = 6.41 (1.14–36.12)) only under adjusted analyses. In addition, both VEGFA SNPs (rs699947and rs3025039) were found to be associated with high Gensini score (p < 0.001).

Conclusions

Our research helps to shed further light on the pathophysiology of CHD. The VEGFA/VEGFR2 signaling pathway may have been downregulated, increasing CHD susceptibility and risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data relating to the study results are available on request from the corresponding author.

References

  1. Khan MA, Hashim MJ, Mustafa H, Baniyas MY, Al Suwaidi SKBM, AlKatheeri R, Alblooshi FMK, Almatrooshi MEAH, Alzaabi MEH, Al Darmaki RS, Lootah SNAH (2020) Global epidemiology of Ischemic Heart Disease: results from the global burden of Disease Study. Cureus 12:e9349. https://doi.org/10.7759/cureus.9349

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kangas-Kontio T, Huotari A, Ruotsalainen H, Herzig K-H, Tamminen M, Ala-Korpela M, Savolainen MJ, Kakko S (2010) Genetic and environmental determinants of total and high-molecular weight adiponectin in families with low HDL-cholesterol and early onset coronary heart disease. Atherosclerosis 210:479–485. https://doi.org/10.1016/j.atherosclerosis.2009.12.022

    Article  CAS  PubMed  Google Scholar 

  3. Kessler T, Schunkert H (2021) Coronary artery Disease Genetics enlightened by genome-wide Association Studies. JACC Basic Transl Sci 6:610–623. https://doi.org/10.1016/j.jacbts.2021.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  4. Meier P, Gloekler S, Zbinden R, Beckh S, de Marchi SF, Zbinden S, Wustmann K, Billinger M, Vogel R, Cook S, Wenaweser P, Togni M, Windecker S, Meier B, Seiler C (2007) Beneficial effect of recruitable collaterals: a 10-year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation 116:975–983. https://doi.org/10.1161/CIRCULATIONAHA.107.703959

    Article  PubMed  Google Scholar 

  5. Holmes K, Roberts OL, Thomas AM, Cross MJ (2007) Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 19:2003–2012. https://doi.org/10.1016/j.cellsig.2007.05.013

    Article  CAS  PubMed  Google Scholar 

  6. Stuttfeld E, Ballmer-Hofer K (2009) Structure and function of VEGF receptors. IUBMB Life 61:915–922. https://doi.org/10.1002/iub.234

    Article  CAS  PubMed  Google Scholar 

  7. Moradzadegan A, Vaisi-Raygani A, Nikzamir A, Rahimi Z (2015) Angiotensin converting enzyme insertion/deletion (I/D) (rs4646994) and vegf polymorphism (+ 405G/C; rs2010963) in type II diabetic patients: Association with the risk of coronary artery disease. J Renin-Angiotensin-Aldosterone Syst JRAAS 16:672–680. https://doi.org/10.1177/1470320313497819

    Article  CAS  PubMed  Google Scholar 

  8. Ferrara N (2009) Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 29:789–791. https://doi.org/10.1161/ATVBAHA.108.179663

    Article  CAS  PubMed  Google Scholar 

  9. Apte RS, Chen DS, Ferrara N (2019) VEGF in Signaling and Disease: Beyond Discovery and Development. Cell 176:1248–1264. https://doi.org/10.1016/j.cell.2019.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee KW, Lip GYH, Blann AD (2004) Plasma angiopoietin-1, angiopoietin-2, angiopoietin receptor tie-2, and vascular endothelial growth factor levels in acute coronary syndromes. Circulation 110:2355–2360. https://doi.org/10.1161/01.CIR.0000138112.90641.7F

    Article  CAS  PubMed  Google Scholar 

  11. Olszewska-Pazdrak B, Hein TW, Olszewska P, Carney DH (2009) Chronic hypoxia attenuates VEGF signaling and angiogenic responses by downregulation of KDR in human endothelial cells. Am J Physiol Cell Physiol 296:C1162–1170. https://doi.org/10.1152/ajpcell.00533.2008

    Article  CAS  PubMed  Google Scholar 

  12. Liu D, Song J, Ji X, Liu Z, Cong M, Hu B (2016) Association of genetic polymorphisms on VEGFA and VEGFR2 with risk of Coronary Heart Disease. Med (Baltim) 95:e3413. https://doi.org/10.1097/MD.0000000000003413

    Article  CAS  Google Scholar 

  13. Wang Y, Zheng Y, Zhang W, Yu H, Lou K, Zhang Y, Qin Q, Zhao B, Yang Y, Hui R (2007) Polymorphisms of KDR gene are associated with coronary heart disease. J Am Coll Cardiol 50:760–767. https://doi.org/10.1016/j.jacc.2007.04.074

    Article  CAS  PubMed  Google Scholar 

  14. Chen M-H, Tzeng C-H, Chen P-M, Lin J-K, Lin T-C, Chen W-S, Jiang J-K, Wang H-S, Wang W-S (2011) VEGF – 460T → C polymorphism and its association with VEGF expression and outcome to FOLFOX-4 treatment in patients with colorectal carcinoma. Pharmacogenomics J 11:227–236. https://doi.org/10.1038/tpj.2010.48

    Article  CAS  PubMed  Google Scholar 

  15. Janardhan B, Vaderhobli S, Bhagat R, Chennagiri Srinivasamurthy P, Venketeshiah Reddihalli P, Gawari R, Krishnamoorthy L (2015) Investigating impact of vascular endothelial growth factor polymorphisms in epithelial ovarian cancers: a study in the Indian Population. PLoS ONE 10:e0131190. https://doi.org/10.1371/journal.pone.0131190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Neeland IJ, Patel RS, Eshtehardi P, Dhawan S, McDaniel MC, Rab ST, Vaccarino V, Zafari AM, Samady H, Quyyumi AA (2012) Coronary angiographic scoring systems: an evaluation of their equivalence and validity. Am Heart J 164:547–552e1. https://doi.org/10.1016/j.ahj.2012.07.007

    Article  PubMed  PubMed Central  Google Scholar 

  17. Saoud H, Aflouk Y, Ben Afia A, Gaha L, Bel Hadj Jrad B (2022) Association of VEGF-A and KDR polymorphisms with the development of schizophrenia. Hum Immunol 83:528–537. https://doi.org/10.1016/j.humimm.2022.04.003

    Article  CAS  PubMed  Google Scholar 

  18. Solé X, Guinó E, Valls J, Iniesta R, Moreno V (2006) SNPStats: a web tool for the analysis of association studies. Bioinforma Oxf Engl 22:1928–1929. https://doi.org/10.1093/bioinformatics/btl268

    Article  CAS  Google Scholar 

  19. Khalili D, Sheikholeslami FH, Bakhtiyari M, Azizi F, Momenan AA, Hadaegh F (2014) The incidence of coronary heart disease and the population attributable fraction of its risk factors in Tehran: a 10-year population-based cohort study. PLoS ONE 9:e105804. https://doi.org/10.1371/journal.pone.0105804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schnohr P, Marott JL, Kristensen TS, Gyntelberg F, Grønbæk M, Lange P, Jensen MT, Jensen GB, Prescott E (2015) Ranking of psychosocial and traditional risk factors by importance for coronary heart disease: the Copenhagen City Heart Study. Eur Heart J 36:1385–1393. https://doi.org/10.1093/eurheartj/ehv027

    Article  PubMed  Google Scholar 

  21. Nauta ST, Deckers JW, van der Boon RM, Akkerhuis KM, van Domburg RT (2014) Risk factors for coronary heart disease and survival after myocardial infarction. Eur J Prev Cardiol 21:576–583. https://doi.org/10.1177/2047487312460514

    Article  PubMed  Google Scholar 

  22. Tomanek RJ, Zheng W, Yue X (2004) Growth factor activation in myocardial vascularization: therapeutic implications. Mol Cell Biochem 264:3–11. https://doi.org/10.1023/b:mcbi.0000044369.88528.a3

    Article  CAS  PubMed  Google Scholar 

  23. Amoli MM, Amiri P, Alborzi A, Larijani B, Saba S, Tavakkoly-Bazzaz J (2012) VEGF gene mRNA expression in patients with coronary artery disease. Mol Biol Rep 39:8595–8599. https://doi.org/10.1007/s11033-012-1713-x

    Article  CAS  PubMed  Google Scholar 

  24. Holm PW, Slart RHJA, Zeebregts CJ, Hillebrands JL, Tio RA (2009) Atherosclerotic plaque development and instability: a dual role for VEGF. Ann Med 41:257–264. https://doi.org/10.1080/07853890802516507

    Article  CAS  PubMed  Google Scholar 

  25. Balakrishnan S, B SK (2022) Correlation of serum vascular endothelial growth factor and cardiovascular risk factors on collateral formation in patients with acute coronary artery syndrome. Clin Anat N Y N 35:673–678. https://doi.org/10.1002/ca.23890

    Article  Google Scholar 

  26. Sun Z, Shen Y, Lu L, Zhang RY, Pu LJ, Zhang Q, Yang ZK, Hu J, Chen QJ, Shen WF (2014) Increased serum level of soluble vascular endothelial growth factor receptor-1 is associated with poor coronary collateralization in patients with stable coronary artery disease. Circ J off J Jpn Circ Soc 78:1191–1196. https://doi.org/10.1253/circj.cj-13-1143

    Article  CAS  Google Scholar 

  27. Han X, Liu L, Niu J, Yang J, Zhang Z, Zhang Z (2015) Association between VEGF polymorphisms (936c/t, -460t/c and – 634 g/c) with haplotypes and coronary heart disease susceptibility. Int J Clin Exp Pathol 8:922–927

    PubMed  PubMed Central  Google Scholar 

  28. Huang A, Qi X, Cui Y, Wu Y, Zhou S, Zhang M (2020) Serum VEGF: diagnostic value of Acute Coronary Syndrome from stable angina Pectoris and Prognostic Value of Coronary Artery Disease. Cardiol Res Pract 2020:6786302. https://doi.org/10.1155/2020/6786302

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shihan W, Jie W, Ji L (2010) Relationship between the Gensini score of blood-stasis syndrome in Coronary Heart Disease and VEGF. World Sci Technol 12:355–357. https://doi.org/10.1016/S1876-3553(11)60015-X

    Article  Google Scholar 

  30. Cui QT, Li Y, Duan CH, Zhang W, Guo XL (2013) Further evidence for the contribution of the vascular endothelial growth factor gene in coronary artery disease susceptibility. Gene 521:217–221. https://doi.org/10.1016/j.gene.2013.03.091

    Article  CAS  PubMed  Google Scholar 

  31. Li L, Pan Y, Dai L, Liu B, Zhang D (2016) Association of genetic polymorphisms on vascular endothelial growth factor and its receptor genes with susceptibility to Coronary Heart Disease. Med Sci Monit Int Med J Exp Clin Res 22:31–40. https://doi.org/10.12659/msm.895163

    Article  CAS  Google Scholar 

  32. Shahbazi M, Fryer AA, Pravica V, Brogan IJ, Ramsay HM, Hutchinson IV, Harden PN (2002) Vascular endothelial growth factor gene polymorphisms are associated with acute renal allograft rejection. J Am Soc Nephrol JASN 13:260–264. https://doi.org/10.1681/ASN.V131260

    Article  CAS  PubMed  Google Scholar 

  33. Watson CJ, Webb NJ, Bottomley MJ, Brenchley PE (2000) Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: correlation with variation in VEGF protein production. Cytokine 12:1232–1235. https://doi.org/10.1006/cyto.2000.0692

    Article  CAS  PubMed  Google Scholar 

  34. Lin T-H, Su H-M, Wang C-L, Voon W-C, Shin S-J, Lai W-T, Sheu S-H (2010) Vascular endothelial growth factor polymorphisms and extent of coronary atherosclerosis in Chinese population with advanced coronary artery disease. Am J Hypertens 23:960–966. https://doi.org/10.1038/ajh.2010.104

    Article  CAS  PubMed  Google Scholar 

  35. Howell WM, Ali S, Rose-Zerilli MJ, Ye S (2005) VEGF polymorphisms and severity of atherosclerosis. J Med Genet 42:485–490. https://doi.org/10.1136/jmg.2004.025734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Biselli PM, Guerzoni AR, de Godoy MF, Pavarino-Bertelli EC, Goloni-Bertollo EM (2008) Vascular endothelial growth factor genetic variability and coronary artery disease in brazilian population. Heart Vessels 23:371–375. https://doi.org/10.1007/s00380-008-1057-6

    Article  PubMed  Google Scholar 

  37. Lin T-H, Wang C-L, Su H-M, Hsu P-C, Juo S-HH, Voon W-C, Shin S-J, Lai W-T, Sheu S-H (2010) Functional vascular endothelial growth factor gene polymorphisms and diabetes: effect on coronary collaterals in patients with significant coronary artery disease. Clin Chim Acta Int J Clin Chem 411:1688–1693. https://doi.org/10.1016/j.cca.2010.07.002

    Article  CAS  Google Scholar 

  38. Marsh S, Nakhoul FM, Skorecki K, Rubin A, Miller BP, Leibu R, Levy NS, Levy AP (2000) Hypoxic induction of vascular endothelial growth factor is markedly decreased in diabetic individuals who do not develop retinopathy. Diabetes Care 23:1375–1380. https://doi.org/10.2337/diacare.23.9.1375

    Article  CAS  PubMed  Google Scholar 

  39. Qiu S, Wu T, Wang P, Li J, Li Q, Du J (2016) The Association between VEGFR Gene polymorphisms and stroke: a Meta-analysis. PLoS ONE 11:e0151371. https://doi.org/10.1371/journal.pone.0151371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang E, Wang Z, Liu S, Gu H, Gong D, Hua K, Nie Y, Wang J, Wang H, Gong J, Zhang Y, Zhang H, Liu R, Hu S, Zhang H (2014) Polymorphisms of VEGF, TGFβ1, TGFβR2 and conotruncal heart defects in a Chinese population. Mol Biol Rep 41:1763–1770. https://doi.org/10.1007/s11033-014-3025-9

    Article  CAS  PubMed  Google Scholar 

  41. Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70. https://doi.org/10.1038/376066a0

    Article  CAS  PubMed  Google Scholar 

  42. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66. https://doi.org/10.1038/376062a0

    Article  CAS  PubMed  Google Scholar 

  43. Kariyazono H, Ohno T, Khajoee V, Ihara K, Kusuhara K, Kinukawa N, Mizuno Y, Hara T (2004) Association of vascular endothelial growth factor (VEGF) and VEGF receptor gene polymorphisms with coronary artery lesions of Kawasaki disease. Pediatr Res 56:953–959. https://doi.org/10.1203/01.PDR.0000145280.26284.B9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the patients and volunteers for their collaboration, the entire team for collecting blood samples from patients (Cardiology Department and Hematology department at Fattouma Bourguiba Hospital, University of Monastir, Tunisia).

Funding

Our study was funded by research organizations in Tunisia (Ministry of Public Health and Ministry of Higher Education and Scientific Research).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization, methodology, formal analysis and investigation were performed by: Foddha hajer. Material preparation, data collection were performed by: Chouchene Saoussen, Bouzidi Nadia, Dhiflaoui Ameni, Gamra Habib, and Ben abdennebi Hassen. The first draft of the manuscript was written by: Foddha hajer and Foddha Abdelhak. Correction of the draft and supervision were performed by: Haj Khelil Amel. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Foddha Hajer.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest and that there are no financial or non-financial interests that are directly or indirectly related to this work.

Statement of ethics

This work is part of a study indexed under the number NCT03373552 of clinical trials on the site of the NIH (National Institutes of Health) of the United States “ClinicalTrials.gov”.

Informed consent

Written informed consent was obtained from each patient included in the study. All research was performed in accordance with ethical guidelines of the 1975 Declaration of Helsinki and the study protocol has been priorly approved by the Institution’s ethics committee on research on humans.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajer, F., Hana, S., Saoussen, C. et al. Genetic polymorphisms in VEGFA and VEGFR2 genes associated with coronary heart disease susceptibility and severity. Mol Biol Rep 50, 10169–10177 (2023). https://doi.org/10.1007/s11033-023-08899-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08899-z

Keywords

Navigation