Skip to main content
Log in

Invasive flower thrips, Thrips parvispinus (Karny) occurrence, host expansion and genetic diversification in a tropical poly-crop ecosystem

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Invasive black flower thrips Thrips parvispinus (Karny) has recently emerged as a significant threat to Indian chilli production. Identifying T. parvispinus became difficult due to the complex presence of thrips species in Indian chilli and allied ecosystems. Pest management success depends on assessing invasive pests genetic populations and their distribution in newly habituated areas.

Methods and results

The current study investigated the genetic diversity and phylogeographic structure of T. parvispinus across major chilli-growing zones representing different agro-climatic conditions in Tamil Nadu. The species-specific chaetotaxy characteristics of T. parvispinus and molecular analysis of the mtCOI gene were used to confirm that the species T. parvispinus has expanded rapidly in three regions (North Western, Western and Cauvery delta), sparsely in one (Southern) and absent from two (hilly and high rainfall). Fifteen allied crops in chilli/capsicum growing tracts served as host plants for T. parvispinus. A shrub species, namely Littleleaf boxwood, Buxus microphylla Siebold & Zucc., is described as a host plant for the first time. On capsicum and chilli, T. parvispinus and Scirtothrips dorsalis coexisted. Thrips palmi, T. tabaci, Frankliniella schultzei, and Microcephalothrips abdominalis co-occurring alongside T. parvispinus on allied crops.

Conclusion

Molecular characterization and haplotype identification help define the genetic composition of T. parvispinus and serve as a foundation for efficient monitoring and creation of Integrated Pest Management (IPM) strategies. As a result, the genetic data presented in this work strongly argues that T. parvispinus as a population is resolving itself towards a fixed state through natural selection that spans its native range globally along with low genetic diversity [Hd: 0.771].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The sequence data produced from this study were deposited on the NCBI website. Other sequence data were retrieved from NCBI. The accession numbers of deposited and retrieved sequences were mentioned in the manuscript. The sequence data were deposited to the iBOLD database to obtain the BIN number, which was mentioned in the manuscript.

Abbreviations

mtCOI:

Mitochondrial cytochrome oxidase I gene

Dnasp:

DNA sequence polymorphism software

PoPART:

Population analysis with reticulate trees

DNA:

Deoxyribonucleic acid

PCR:

Polymerase chain reaction

NCBI:

National Center for Biotechnology Information

BLASTn:

Basic local alignment search tool

MEGA:

Molecular evolutionary genetics analysis

References

  1. Tessema YA (2012) Ecological and economic dimensions of the paradoxical invasive species-Prosopis juliflora and policy challenges in Ethiopia. J Econ Sustain Dev 3(8):62–71

    Google Scholar 

  2. NBAIR (2022) Invasive thrips, Thrips parvispinus (Karny) threatening chilli cultivation in India. National Bureau of Agricultural Insect Resources. https://www.nbair.res.in/pest-alert. Accessed on 13 July 2022

  3. Ananthakrishnan TN (1993) Bionomics of thrips. Annu Rev Entomol 38(1):71–92. https://doi.org/10.1146/annurev.en.38.010193.000443

    Article  Google Scholar 

  4. Pappu HR, Jones RAC, Jain RK (2009) Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Res 141(2):219–236. https://doi.org/10.1016/j.virusres.2009.01.009

    Article  CAS  PubMed  Google Scholar 

  5. ThripsWiki (2022) ThripsWiki - providing information on the World's thrips. http://thrips.info/wiki/Main_Page. Accessed on 12 July 2022

  6. Mound LA, Morris DC (2007) The insect order Thysanoptera: classification versus systematics. Zootaxa 1668(1):395–411. https://doi.org/10.11646/zootaxa.1668.1.21

    Article  Google Scholar 

  7. Rachana RR, Roselin P, Varatharajan R (2018) Report of invasive thrips species, Thrips parvispinus (Karny) (Thripidae: Thysanoptera) on Dahlia rosea (Asteraceae) in Karnataka. Pest Manage Hortic Ecsyst 24(2):175–176

    Google Scholar 

  8. Rotenberg D, Jacobson AL, Schneweis DJ, Whitfield AE (2015) Thrips transmission of tospoviruses. Curr Opin Virol 15:80–89. https://doi.org/10.1016/j.coviro.2015.08.003

    Article  PubMed  Google Scholar 

  9. Tyagi K, Mound L, Kumar V (2008) Sexual dimorphism among Thysanoptera Terebrantia, with a new species from Malaysia and remarkable species from India in Aeolothripidae and Thripidae. Insect SystEvol 39(2):155–170. https://doi.org/10.1163/187631208788784093

    Article  Google Scholar 

  10. Whitfield AE, Falk BW, Rotenberg D (2015) Insect vector-mediated transmission of plant viruses. Virol 479:278–289. https://doi.org/10.1016/j.virol.2015.03.026

    Article  CAS  Google Scholar 

  11. Murai T, Watanabe H, Toriumi W, Adati T, Okajima S (2009) Damage to vegetable crops by Thrips parvispinus Karny (Thysanoptera: Thripidae) and preliminary studies on biology and control. J Insect Sci 10:166. https://doi.org/10.1673/031.010.14126

    Article  Google Scholar 

  12. EPPO (2022) Thrips parvispinus (THRIPV). European and Mediterranean Plant Protection Organization Global Database. https://gd.eppo.int/taxon/THRIPV/hosts. Accessed on 15 June 2022

  13. Moritz G, Kumm S, Mound L (2004) Tospovirus transmission depends on thrips ontogeny. Virus Res 100(1):143–149. https://doi.org/10.1016/j.virusres.2003.12.022

    Article  CAS  PubMed  Google Scholar 

  14. Mound LA, Collins DW (2000) A southeast asian pest species newly recorded from Europe: Thrips parvispinus (Thysanoptera: Thripidae), its confused identity and potential quarantine significance. Eur J Entomol 97:197–200. https://doi.org/10.14411/eje.2000.037

    Article  Google Scholar 

  15. Naik VCB, Pusadkar PP, Waghmare ST, Kranthi S, Kumbhare S, Waghmare VN (2020) Evidence for population expansion of cotton pink bollworm Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) in India. Sci Rep 10(1):4740. https://doi.org/10.1038/s41598-020-61389-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rachana RR, Roselin P, Amutha M, Sireesha K, Reddy GN (2022) Invasive pest, Thrips parvispinus (Karny) (Thysanoptera: Thripidae)–a looming threat to indian agriculture. Curr Sci 122(2):211–213. https://doi.org/10.18520/cs/v122/i2/211-213

    Article  Google Scholar 

  17. Hutasoit RT, Triwidodo H, Anwar R (2017) Biology and demographic statistic of Thrips parvispinus Karny (Thysanoptera: Thripidae) in chilli pepper (Capsicum annuum Linnaeus). J Entomol Indones 14:107–116. https://doi.org/10.5995/jei.14.3.107

    Article  Google Scholar 

  18. Johari A, Herlinda S, Pujiastuti Y, Irsan C, Sartiami D (2014) Morphological and genetic variation of Thrips parvispinus (Thysanoptera: Thripidae) in chilli plantation (Capsicum annuum L.) in the lowland and highland of Jambi Province. Indonesia Am J Bio Sci 2:17–21. https://doi.org/10.11648/j.ajbio.s.2014020601.14

    Article  CAS  Google Scholar 

  19. Sridhar V, Rachana RR, Prasannakumar NR, Venkataravanappa V, Sireesha K, Kumari DA, Reddy MK (2021) Dominance of invasive species, Thrips parvispinus (Karny) over the existing chilli thrips, Scirtothrips dorsalis Hood on chilli in the southern states of India with a note on its host range: a likely case of species displacement. Pest Manage Hortic Ecsyst 27(2):132–136

    Google Scholar 

  20. Brunner PC, Flemming C, Frey JE (2002) A molecular identification key for economically important thrips species (Thysanoptera: Thripidae) using direct sequencing and a PCR-RFLP-based approach. Agric for Entomol 4:127–136. https://doi.org/10.1046/j.1461-9563.2002.00132.x

    Article  Google Scholar 

  21. Mouden S, Sarmiento KF, Klinkhamer PG, Leiss KA (2017) Integrated pest management in western flower thrips: past, present and future. Pest Manag Sci 73(5):813–822. https://doi.org/10.1002/ps.4531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brunner PC, Chatzivassiliou EK, Katis NI, Frey JE (2004) Host-associated genetic differentiation in Thrips tabaci (Insecta; Thysanoptera), as determined from mtDNA sequence data. Heredity 93(4):364–370. https://doi.org/10.1038/sj.hdy.6800512

    Article  CAS  PubMed  Google Scholar 

  23. Iftikhar R, Ashfaq M, Rasool A, Hebert PD (2016) DNA barcode analysis of thrips (Thysanoptera) diversity in Pakistan reveals cryptic species complexes. PLoS ONE 11(1):e0146014. https://doi.org/10.1371/journal.pone.0146014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tyagi K, Kumar V, Singha D, Chandra K, Laskar BA, Kundu S, Chatterjee S (2017) DNA barcoding studies on Thrips in India: cryptic species and species complexes. Sci Rep 7(1):1–14. https://doi.org/10.1038/s41598-017-05112-7

    Article  CAS  Google Scholar 

  25. Buckman RS, Mound LA, Whiting MF (2013) Phylogeny of thrips (Insecta: Thysanoptera) based on five molecular loci. Syst Entomol 38(1):123–133. https://doi.org/10.1111/j.1365-3113.2012.00650.x

    Article  Google Scholar 

  26. Mound LA, Wheeler GS, Williams DA (2010) Resolving cryptic species with morphology and DNA; thrips as a potential biocontrol agent of brazilian peppertree, with a new species and overview of Pseudophilothrips (Thysanoptera). Zootaxa 2432(1):59–68. https://doi.org/10.11646/zootaxa.2432.1.3

    Article  Google Scholar 

  27. Asokan R, Kumar NK, Kumar V, Ranganath HR (2007) Molecular differences in the mitochondrial cytochrome oxidase I (mtCOI) gene and development of a species-specific marker for onion thrips, Thrips tabaci Lindeman, and melon thrips, T. palmi Karny (Thysanoptera: Thripidae), vectors of tospoviruses (Bunyaviridae). Bull Entomol Res 97(5):461–470. https://doi.org/10.1017/S0007485307005147

    Article  CAS  PubMed  Google Scholar 

  28. Tyagi K, Kumar V, Singha D, Chakraborty R (2015) Morphological and DNA barcoding evidence for invasive pest thrips, Thrips parvispinus (Thripidae: Thysanoptera), newly recorded from India. J Insect Sci 15(1):105. https://doi.org/10.1093/jisesa/iev087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Allan SA, Gillett-Kaufman JL (2018) Attraction of thrips (Thysanoptera) to colored sticky traps in a Florida olive grove. Fla Entomol 101(1):61–68

    Article  Google Scholar 

  30. Mound LA, Kibby G (1998) Thysanoptera: an identification guide. Cab International, Wallingford, United Kingdom

    Google Scholar 

  31. Mound LA, Masumoto M (2005) The genus Thrips (Thysanoptera, Thripidae) in Australia, New Caledonia and New Zealand. Zootaxa 1020(1):1–64. https://doi.org/10.11646/zootaxa.1020.1.1

    Article  Google Scholar 

  32. De Barro PJ, Driver F (1997) Use of RAPD PCR to distinguish the B biotype from other biotypes of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Aust J Entomol 36(2):149–152. https://doi.org/10.1111/j.1440-6055.1997.tb01447.x

    Article  Google Scholar 

  33. Montero-Pau J, Gómez A, Muñoz J (2008) Application of an inexpensive and high‐throughput genomic DNA extraction method for the molecular ecology of zooplanktonic diapausing eggs. Limnol Oceanogr Methods 6(6):218–222. https://doi.org/10.4319/lom.2008.6.218

    Article  CAS  Google Scholar 

  34. Leão EU, Spadotti DMDA, Rocha KCG, Lima ÉFB, Tavella L, TurinaM, Krause-Sakate R (2018) Efficient detection of Frankliniella schultzei (Thysanoptera, Thripidae) by cytochrome oxidase I gene (mtCOI) direct sequencing and real-time PCR. Braz Arch Biol Technol 60:e17160425. https://doi.org/10.1590/1678-4324-2017160425

    Article  CAS  Google Scholar 

  35. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.1111/j.1558-5646.1992.tb01991.x

    Article  PubMed  Google Scholar 

  36. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment [Ed.], and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser London 41:95–98

    CAS  Google Scholar 

  37. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093%2Fmolbev%2Fmsy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Mol Biol Evol 9:678–687. https://doi.org/10.1093/oxfordjournals.molbev.a040752

    Article  CAS  PubMed  Google Scholar 

  39. Raghavendra KV, Ramesh KB, Rachana RR, Mahendra C, Singh SK, Chander S (2023) Genetic diversity analysis of severely infesting invasive thrips, Thrips parvispinus (Karny) in chilli (Capsicum annuum L.) in India. Phytoparasitica 51(2):1–13. https://doi.org/10.1007/s12600-023-01054-1

    Article  Google Scholar 

  40. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452. https://doi.org/10.1093/bioinformatics/btp187

    Article  CAS  PubMed  Google Scholar 

  41. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Bio Evol 16(1):37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036

    Article  CAS  Google Scholar 

  42. Nagaraju DK, Vivek U, Ranjith M, Sriharsha RG, Verma OP, Prakash R (2021) Occurrence of Thrips parvispinus (Karny) (Thripidae: Thysanoptera) in major chilli (Capsicum annum) growing areas of Karnataka. Insect Environ 24(4):523–532

    Google Scholar 

  43. Amutha M, Rachana RR (2022) A new host record for the invasive thrips Thrips parvispinus Karny from India. Indian J Entomole 21148:1–3. https://doi.org/10.55446/IJE.2021.354

    Article  Google Scholar 

  44. Sartiami D, Magdalena M, Nurmansyah A (2011) Thrips parvispinus Karny (Thysanoptera: Thripidae) on chili plants: morphological differences in the three character height place. J Entomol Indones 8(2):85–95. https://doi.org/10.5994/jei.8.2.85-95

    Article  Google Scholar 

  45. Sireesha K, Prasanna BVL, Vijaya Lakshmi T, Reddy RVSK (2021) Outbreak of invasive thrips species Thrips parvispinus in chilli growing areas of Andhra Pradesh. Insect Environ 24(4):514–519

    Google Scholar 

  46. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  47. Kucharczyk H, Kucharczyk M (2009) Thrips atratus Haliday, 1836 and T. montanus Priesner, 1920 (Thysanoptera: Thripidae)–one or two species? Comparative morphological studies. Acta Zool Acad Sci Hungaricae 55(4):349–364

    Google Scholar 

  48. Mehle N, Trdan S (2012) Traditional and modern methods for the identification of thrips (Thysanoptera) species. J Pest Sci 85(2):179–190. https://doi.org/10.1007/s10340-012-0423

    Article  Google Scholar 

  49. Crespi BJ, Carmean DA, Mound LA, Worobey M, Morris D (1998) Phylogenetics of social behavior in australian gall-forming thrips: evidence from mitochondrial DNA sequence, adult morphology and behavior, and gall morphology. Mol Phylogenet Evol 9(1):163–180. https://doi.org/10.1006/mpev.1997.0449

    Article  CAS  PubMed  Google Scholar 

  50. Sacks BN, Brown SK, Ernest HB (2004) Population structure of California coyotes corresponds to habitat-specific breaks and illuminates species history. Mol Ecol 13(5):1265–1275. https://doi.org/10.1111/j.1365-294X.2004.02110.x

    Article  CAS  PubMed  Google Scholar 

  51. Kasoju VT, Santhanakrishnan A (2021) Pausing after clap reduces power required to fling wings apart at low Reynolds number. Bioinspir Biomim 16(5):056006. https://doi.org/10.1088/1748-3190/ac050a

    Article  CAS  Google Scholar 

  52. Anitha K (2022) Invasive and alien pest species-A threat to indian agriculture: role of ICAR-NBPGR in preventing their entry. In: Srinivasa Rao T, Prasad TV, Balasubramani N, Singh VK (eds) Ed)adaptation strategies for Pest Management in Climate change scenarios. ICAR-CRIDA& MANAGE, Hyderabad, pp 39–42

    Google Scholar 

Download references

Acknowledgements

The authors duly acknowledge the Department of Agricultural Entomology, TNAU, Coimbatore, for providing financial and physical assistance in specimen collections and sharing materials while analyzing insect samples in the laboratory. The authors gratefully acknowledge the critical review and suggestions given by the anonymous reviewers.

Funding

The doctoral study fellowship provided to A.P. under the Innovation in Science Pursuit for Inspired Research (INSPIRE) Scholarship (DST/INSPIRE Fellowship/2019/IF190857) for the Higher Education Program (SHE) of the Department of Science and Technology, Ministry of Science & Technology, Government of India is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

MM designed the principal research aims, supervised all the processes, and evaluated the manuscript. AP collected and analyzed the insect sample, performed the experimental methods, analyzed the results, and wrote the manuscript. BV, CN, and KG have helped with technical advice during research. PL contributed to samples from field collection. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Murugan Marimuthu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest regarding the research or funding.

Ethical approval

This article contains no studies with human participants or vertebrate animals performed by the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 982.8 kb)

Supplementary material 2 (DOCX 27.8 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palanisamy, A., Marimuthu, M., Narayanasamy, C. et al. Invasive flower thrips, Thrips parvispinus (Karny) occurrence, host expansion and genetic diversification in a tropical poly-crop ecosystem. Mol Biol Rep 50, 9909–9923 (2023). https://doi.org/10.1007/s11033-023-08831-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08831-5

Keywords

Navigation