Skip to main content
Log in

Emerging cell cycle related non-coding RNA biomarkers from saliva and blood for oral squamous cell carcinoma

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The unnotified or undifferentiable early stages of oral squamous cell carcinoma (OSCC) progression are the prime reasons for late-stage detection and poor survival outcomes of oral cancer. This review summarizes the prior research and recent advancements on the influence of dysregulated non-coding RNA (ncRNA) on cell cycle and their employability as diagnostic and prognostic biomarkers of oral cancer. The literature search was performed using the following keywords: ‘serum/saliva non-coding RNAs’ and ‘serum/saliva non-coding RNAs and cell cycle’, ‘serum/saliva dysregulated ncRNAs and cell cycle’, ‘Cdk/CKI and ncRNAs’, ‘tissue ncRNAs’ concerning ‘oral cancer’’. The compiled data focuses mainly on the diagnostic and prognostic significance of MicroRNAs (miRNAs), Circular RNAs (circRNAs), and Long noncoding RNAs (lncRNAs) on oral cancer and all other cancers as well as subject-relevant articles published in languages other than English are beyond the scope of this review and excluded from the study. Moreover, articles focusing on DNA, protein, and metabolite markers are eliminated from the study. While there exist various potential biomolecules such as DNA, RNA, proteins, metabolites, and specific antigens representing predictive biomarkers in body fluids for oral cancer, this review completely focuses on non-coding RNAs restricted to saliva and blood, picking out a few of the reliable ones amongst the recent investigations based on the sophisticated techniques, cohort, and sensitivity as well as specificity, i.e., salivary miR-1307-5p, miR-3928, hsa_circ_0001874 and ENST00000412740, NR_131012, ENST00000588803, NR_038323, miR-21 in circulation. Thus, further studies are required to clinically confirm the usage of these non-invasive biomarkers in oral cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

Abbreviations

OSCC:

Oral squamous cell carcinoma

HNSCC:

Head and Neck squamous cell carcinoma

OSMF:

Oral submucous fibrosis

HPV:

Human papillomavirus

ncRNA:

Non-coding RNA

lncRNA:

Long non-coding RNA

CircRNA:

Circular RNA

miRNA:

MicroRNA

CKIs:

Cyclin-dependent kinase inhibitors

RPICs:

Ribosomal protein inhibiting Cdks

HDACis:

Histone deacetylase inhibitors

Rb:

Retinoblastoma

TSCC:

Tongue squamous cell carcinoma

siRNAs:

Short interfering RNAs

piRNAs:

PIWI-interacting RNAs

snRNA:

Small nuclear RNA

snoRNA:

Small nucleolar RNAs

rasiRNAs:

Repeat-associated RNAs

pri miRNA:

Primary miRNA

OPMDs:

Oral pre-malignant disorders

OLK:

Oral leukoplakia

OLP:

Oral lichen planus

OSF:

Oral submucous fibrosis

lincRNAs:

Long intergenic ncRNAs

asRNAs:

Antisense RNAs

EMT:

Epithelial-mesenchymal transition

YAP:

Yes-associated protein

HotairR:

Hox Transcript Antisense RNA

Neat1:

Nuclear Enriched Abundant Transcript 1

Uca1:

Urothelial cancer associated 1

Meg-3:

Maternally expressed gene 3

Tug1:

Taurine upregulated gene 1

PRC2:

Polycomb repressive complex 2

HOTTIP:

HOXA distal transcript antisense RNA

ceRNA:

Competing endogenous RNA

DLEU1:

Deleted in lymphocytic leukemia 1

OC:

Oral carcinoma

EZH2:

Enhancer of zeste homolog 2

LUCAT-1:

Lung cancer-related transcript 1

PCNA:

Proliferating cell nuclear antigen

GACAT1:

Gastric cancer-associated transcript 1

MALAT1:

Metastasis-associated lung adenocarcinoma transcript 1

CAF:

Cancer-associated fibroblasts

BANCR:

BRAF activated long non-coding RNA

LOLA1:

LncRNA oral leukoplakia progressed associated 1

LPP:

Lipoma preferred partner

CILA1:

Chemotherapy-induced lncRNA 1

LPP:

Lipoma preferred partner

GAS5:

Growth Arrest Specific 5

LAST:

LncRNA-assisted stabilization of transcripts

ANROC:

Associated negative regulation of cell proliferation

ROC:

Receiver operating characteristic

References

  1. Hyuna S et al (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71:209–249

    Article  Google Scholar 

  2. Swati S et al (2018) Oral cancer statistics in India on the basis of first report of 29 population-based cancer registries. J Oral Maxillofac Pathol 22:18

    Article  Google Scholar 

  3. Purandar S et al (2021) Dysbiosis of Oral Microbiota During Oral Squamous Cell Carcinoma Development. Front Oncol 11:1–15

    Google Scholar 

  4. Ganesan A et al (2017) Expression profiling of long non-coding RNA identifies linc-RoR as a prognostic biomarker in oral cancer. Tumor Biol. https://doi.org/10.1177/1010428317698366

    Article  Google Scholar 

  5. Vasileios R et al (2018) P53 mutations in oral cavity carcinoma. J BUON 23:1569–1572

    Google Scholar 

  6. Ying C et al (2021) Longitudinal detection of somatic mutations in saliva and plasma for the surveillance of oral squamous cell carcinomas. PLoS ONE 16:1–15

    Google Scholar 

  7. Marina B, Le CB, Gerardo F, Volker B, Frédéric L (2021) Cell biology new insights into CDK regulators novel opportunities for cancer therapy. Trends Cell Biol 31:331–344

    Article  Google Scholar 

  8. Borui Z et al (2019) Enhancement of histone deacetylase inhibitor sensitivity in combination with cyclin-dependent kinase inhibition for the treatment of oral squamous cell carcinoma. Cell Physiol Biochem 53:141–156

    Article  Google Scholar 

  9. Maria G et al (2021) Understanding the complex pathogenesis of oral cancer: A comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol 132:566–579

    Article  Google Scholar 

  10. Monteiro Luís Silva et al. 2012 Combined cytoplasmic and membranous EGFR and p53 overexpression is a poor prognostic marker in early stage oral squamous cell carcinoma. J Oral Pathol Med 41: 559–567

  11. Guangzhao G, Bakr Mahmoud M, Norman F, Love RM (2018) Expression of cyclin D1 correlates with p27KIP1 and regulates the degree of oral dysplasia and squamous cell carcinoma differentiation. Oral Surg Oral Med Oral Pathol Oral Radiol 126:174–183

    Article  Google Scholar 

  12. Yixuan Li et al (2022) Cyclin-dependent kinase 5 promotes the growth of tongue squamous cell carcinoma through the microRNA 513c–5p/cell division cycle 25B pathway and is associated with a poor prognosis. Cancer 128:1775–1786

    Article  Google Scholar 

  13. Xin C et al (2015) The clinical signifcance of cdk1 expression in oral squamous cell carcinoma. Med Oral Patol Oral Cir Bucal 20:e7–e12

    Google Scholar 

  14. Palareti G et al (2016) Comparison between different D-Dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: Analysis of results obtained in the DULCIS study. Int J Lab Hematol 38:42–49

    Article  CAS  PubMed  Google Scholar 

  15. Sana F et al (2022) Immunohistochemical analysis of expression of cyclin D1 in different grades of oral squamous cell carcinoma. J Pharm Res Int. https://doi.org/10.9734/jpri/2022/v34i30B36072

    Article  Google Scholar 

  16. Qiu-shi P et al (2020) CircRNA _ 0000140 suppresses oral squamous cell carcinoma growth and metastasis by targeting miR-31 to inhibit Hippo signaling pathway. Cell Death Dis. https://doi.org/10.1038/s41419-020-2273-y

    Article  Google Scholar 

  17. Irimie Alexandra Iulia et al. (2017) A Looking-Glass of Non-Coding RNAs in Oral Cancer. Int J Mol Sci Doi: https://doi.org/10.3390/ijms18122620

  18. Viviana V, Monica R (2018) miR-100 and miR-125b regulate epithelial-mesenchymal transition and drug resistance in tumors. Non-coding RNA Investig 2:57–57

    Article  Google Scholar 

  19. Libório-Kimura Tatiana N, Min JH, Chan Edward KL (2015) miR-494 represses HOXA10 expression and inhibits cell proliferation in oral cancer. Oral Oncol 51:151–157

    Article  PubMed  Google Scholar 

  20. Shao Yuan Qu, Yiping DS, Bowen Y, Meiju Ji (2013) MiR-145 inhibits oral squamous cell carcinoma (OSCC) cell growth by targeting c-Myc and Cdk6. Cancer Cell Int 13:1

    Google Scholar 

  21. Ling-fei J, Su-bi W, Kai G, Gan Ye-hua Y, Guang-yan (2013) Prognostic Implications of MicoRNA miR-195 expression in human tongue squamous cell carcinoma. PLoS ONE 8:1–11

    Google Scholar 

  22. Manasa VG, Kannan S (2017) Impact of microRNA dynamics on cancer hallmarks: An oral cancer scenario. Tumor Biol. https://doi.org/10.1177/1010428317695920

    Article  Google Scholar 

  23. Zicheng W, Beili L, Deqiang H, Xiaoming L (2021) Mir-5100 Mediates Proliferation, migration and invasion of oral squamous cell carcinoma cells via targeting SCAI. J Investig Surg 34:834–841

    Article  Google Scholar 

  24. Xiaotang W et al (2020) MicroRNA-504 functions as a tumor suppressor in oral squamous cell carcinoma through inhibiting cell proliferation, migration and invasion by targeting CDK6. Int J Biochem Cell Biol 119:105663

    Article  Google Scholar 

  25. Zekun W et al (2023) MicroRNA-191 regulates oral squamous cell carcinoma cells growth by targeting PLCD1 via the Wnt/β-catenin signaling pathway. BMC Cancer 23:668

    Article  Google Scholar 

  26. Huang Fei et al. Noncoding RNAs in oral premalignant disorders and oral squamous cell carcinoma.

  27. Anquan S et al (2018) miR-9 induces cell arrest and apoptosis of oral squamous cell carcinoma via CDK 4/6 pathway. Artif Cells, Nanomed Biotechnol 46:1754–1762

    Google Scholar 

  28. He Z, da Jiang Lin hong, Sun Da wei, Hou Jun chen, Ji Zhen ling (2018) CircRNA: a novel type of biomarker for cancer. Breast Cancer. https://doi.org/10.1007/s12282-017-0793-9

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang Xiao Yun et al. 2022 Circyap inhibits oral squamous cell carcinoma by arresting cell cycle. Acta Odontol Scand 80(2): 117–124

  30. Yilong Ai et al (2020) circ_SEPT9, a newly identified circular RNA, promotes oral squamous cell carcinoma progression through miR-1225/PKN2 axis. J Cell Mol Med 24:13266–13277

    Article  Google Scholar 

  31. Guanhui C et al (2020) Upregulation of Circular RNA circATRNL1 to sensitize oral squamous cell carcinoma to irradiation. Mol Ther Nucleic Acids 19:961–973

    Article  Google Scholar 

  32. Kuangzheng L et al (2021) Circ _ 0000745 strengthens the expression of CCND1 by functioning as miR - 488 sponge and interacting with HuR binding protein to facilitate the development of oral squamous cell carcinoma. Cancer Cell Int. https://doi.org/10.1186/s12935-021-01884-1

    Article  Google Scholar 

  33. Yu Huiming Y, Zhifen WX, Dazhao W (2021) Circular RNA circCLK3 promotes the progression of tongue squamous cell carcinoma via miR-455–5p / PARVA axis. Biotech and App Biochem. https://doi.org/10.1002/bab.2120

    Article  Google Scholar 

  34. Wei D et al (2019) Microarray profile of circular RNAs identifies hsa_circRNA_102459 and hsa_circRNA_043621 as important regulators in oral squamous cell carcinoma. Oncol Rep 42:2738–2749

    Google Scholar 

  35. Soudeh G, Hamed S, Tondro AF (2020) The role of non-coding RNAs in controlling cell cycle related proteins in cancer cells. Front Oncol. https://doi.org/10.3389/fonc.2020.608975

    Article  Google Scholar 

  36. Hongcheng J, Xuan W, Zheng S (2021) Screening and validation of plasma long non-coding RNAs as biomarkers for the early diagnosis and staging of oral squamous cell carcinoma. Oncol Lett 21:1–8

    Google Scholar 

  37. Luka B, Metka RG, Damjan G (2017) Long Noncoding RNAs as Biomarkers in Cancer. Dis Markers. https://doi.org/10.1155/2017/7243968

    Article  Google Scholar 

  38. Na Li, Hongbo D, Qing X, Xuezhen W (2021) Long-chain non-coding RNA HOTTIP enhances oral cancer cell proliferation and migration capacity by down-regulating miR-206. J BUON 26:762–768

    Google Scholar 

  39. Koyo N et al (2018) Screening for long noncoding RNAs associated with oral squamous cell carcinoma reveals the potentially oncogenic actions of DLEU1. Cell Death Dis. https://doi.org/10.1038/s41419-018-0893-2

    Article  Google Scholar 

  40. Yue Z, Rui Y (2021) Long non-coding RNA HOXA-AS3 promotes cell proliferation of oral squamous cell carcinoma through sponging microRNA miR-218-5p. Bioengineered 12:8724–8737

    Article  Google Scholar 

  41. Mingwei C, Yanliang Z, Jingfang X, Enming Z, Xiaoqing Z (2020) Integrative profiling analysis identifies the oncogenic long noncoding RNA DUXAP8 in oral cancer. Anticancer Drugs 8:792–798

    Google Scholar 

  42. Yang Cheng Mei et al. Aberrant DNA hypermethylation-silenced SOX21-AS1 gene expression and its clinical importance in oral cancer. Clin Epigenetics 2016; 8: 129.

  43. Rui Z, Tao WanjunLei Yu (2023) Overexpression of long non-coding RNA GASL1 induces apoptosis and G0/G1 cell cycle arrest in human oral cancer cells. Acta Biochim Pol 70:271–276

    Google Scholar 

  44. Ce X, Shou-gang S, Zhi-quan Y, Feng B (2021) Biomedicine & pharmacotherapy role of lncRNA LUCAT1 in cancer. Biomed Pharmacother 134:111158

    Article  Google Scholar 

  45. Jingxin C et al (2021) LncRNA GACAT1 targeting miRNA-149 regulates the molecular mechanism of proliferation, apoptosis and autophagy of oral squamous cell carcinoma cells. Aging (Albany NY) 13:20359–20371

    Google Scholar 

  46. Jun L, Lizhong L, Kexiong O, Zhiqiang Li, Xianping Yi (2017) MALAT1 induces tongue cancer cells’ EMT and inhibits apoptosis through Wnt/β-catenin signaling pathway. J Oral Pathol Med 46:98–105

    Article  Google Scholar 

  47. Chunyu W, Qiang W, Guangqi Y (2021) Long noncoding RNA ZEB1-AS1 downregulates miR-23a, promotes tumor progression, and predicts the survival of oral squamous cell carcinoma patients. OncoTargets and Therapy 14:2699–2710

    Article  Google Scholar 

  48. Chenxi Li et al (2020) Biomedicine & pharmacotherapy Long non-coding RNA RBM5-AS1 promotes the aggressive behaviors of oral squamous cell carcinoma by regulation of miR-1285-3p / YAP1 axis. Biomed Pharmacother 123:109723

    Article  Google Scholar 

  49. Wei L, Yilin Y, Linjun S, Tang GuoyaoLan W (2021) A novel lncRNA LOLA1 may predict malignant progression and promote migration, invasion, and EMT of oral leukoplakia via the AKT/GSK-3β pathway. J Cell Biochem 122:1302–1312

    Article  Google Scholar 

  50. Xiaozhen Wu, Zuode G, Long M, Qibao W (2021) lncRNA RPSAP52 induced the development of tongue squamous cell carcinomas via miR-423-5p/MYBL2. J Cell Mol Med 25:4744–4752

    Article  Google Scholar 

  51. Xiaoyong Q, Chenxi L, Hao C (2021) Long Noncoding RNA ZFAS1 Promotes Progression of Oral Squamous Cell Carcinoma Through Targeting miR-6499-3p/CCL5 Axis. In Vivo (Brooklyn) 35:3211

    Article  Google Scholar 

  52. Fenqian Y et al (2020) Long non-coding RNA PHACTR2-AS1 promotes tongue squamous cell carcinoma metastasis by regulating Snail. J Biochem 168:651–657

    Article  Google Scholar 

  53. Wang J, Jia J, Zhou L (2020) Long non-coding RNA CASC2 enhances cisplatin sensitivity in oral squamous cell cancer cells by the miR-31-5p/KANK1 axis. Neoplasma 67:1279–1292

    Article  CAS  PubMed  Google Scholar 

  54. Shuwei C, Muwen Y, Chunyang W, Ying O (2021) Forkhead box D1 promotes EMT and chemoresistance by upregulating lncRNA CYTOR in oral squamous cell carcinoma. Cancer Lett 503:43–53

    Article  Google Scholar 

  55. Xue Q et al (2021) Long noncoding RNA CEBPA-DT promotes cisplatin chemo-resistance through CEBPA/BCL2 mediated apoptosis in oral squamous cellular cancer. Int J Med Sci. https://doi.org/10.7150/ijms.64253

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhaoyu L et al (2018) Chemotherapy-Induced Long Non-coding RNA 1 Promotes Metastasis and Chemo-Resistance of TSCC via the Wnt/b -Catenin Signaling Pathway. Mol Ther 26:1494–1508

    Article  Google Scholar 

  57. Dongya Z et al (2017) Midkine derived from cancer-associated fibroblasts promotes cisplatin-resistance via up-regulation of the expression of lncRNA ANRIL in tumour cells. Sci Rep 7:1–11

    Google Scholar 

  58. Zheng F et al (2017) LncRNA UCA1 promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by sunppressing miR-184 expression Medicine. Cancer Med. https://doi.org/10.1002/cam4.1253

    Article  PubMed  PubMed Central  Google Scholar 

  59. Xuguang Y et al (2022) GAS5 alleviates cisplatin drug resistance in oral squamous cell carcinoma by sponging miR-196a. J Int Med Res. https://doi.org/10.1177/03000605221132456

    Article  Google Scholar 

  60. Shanyi Z et al (2018) LncRNA KCNQ1OT1 regulates proliferation and cisplatin resistance in tongue cancer via MIR-211–5p mediated Ezrin/Fak/Src signaling. Cell Death Dis. https://doi.org/10.1038/s41419-018-0793-5

    Article  Google Scholar 

  61. Te Hsuan J et al (2022) MicroRNA-485-5p targets keratin 17 to regulate oral cancer stemness and chemoresistance via the integrin/FAK/Src/ERK/β-catenin pathway. J Biomed Sci 29:1–20

    Google Scholar 

  62. Xijun W, Hongmei G, Banjamin Y, Julia H (2017) miR-15b inhibits cancer-initiating cell phenotypes and chemoresistance of cisplatin by targeting TRIM14 in oral tongue squamous cell cancer. Oncology Reports 5:2720–2726

    Google Scholar 

  63. Sayyed Adil Ali et al. 2021 MiR-155 Inhibitor-Laden Exosomes Reverse Resistance to Cisplatin in a 3D Tumor Spheroid and Xenograft Model of Oral Cancer. Mol Pharm 18(8): 3010–3025

  64. Jun C et al (2020) Exosomal miR-200c suppresses chemoresistance of docetaxel in tongue squamous cell carcinoma by suppressing TUBB3 and PPP2R1B. Aging (Albany NY) 12:6756–6773

    Google Scholar 

  65. Guopei Z et al (2015) ZEB1 transcriptionally regulated carbonic anhydrase 9 mediates the chemoresistance of tongue cancer via maintaining intracellular pH. Mol Cancer 14:1–12

    Google Scholar 

  66. Shen Li et al (2021) Exosomal-mediated transfer of APCDD1L-AS1 induces 5-fluorouracil resistance in oral squamous cell carcinoma via miR-1224-5p/nuclear receptor binding SET domain protein 2 (NSD2) axis. Bioengineered 12:7188–7204

    Google Scholar 

  67. Liqiang C, Zhu Qingli Lu, Lingwei LY (2020) MiR-132 inhibits migration and invasion and increases chemosensitivity of cisplatin-resistant oral squamous cell carcinoma cells via targeting TGF-β1. Bioengineered 11:91–102

    Article  Google Scholar 

  68. Yan JiaweiHongyan Xu (2021) Regulation of transforming growth factor-beta1 by circANKS1B/miR-515-5p affects the metastatic potential and cisplatin resistance in oral squamous cell carcinoma. Bioengineered 12:12420–12430

    Article  Google Scholar 

  69. Vasileios Zisis et al (2023) Preliminary Study of the Cancer Stem Cells’ Biomarker CD147 in Leukoplakia: Dysplasia and Squamous Cell Carcinoma of Oral Epithelial Origin. Cureus. https://doi.org/10.7759/cureus.38807

    Article  Google Scholar 

  70. Vasileios Z, Konstantinos P, Poulopoulos A, Prashanth P, Andreadis D (2023) Altered Presence of Cancer Stem Cell ALDH1/2 in Oral Leukoplakias and Squamous Cell Carcinomas. Cureus 15:1–8

    Google Scholar 

  71. Rajakishore M (2013) Cell cycle-regulatory cyclins and their deregulation in oral cancer. Oral Oncol 49:475–481

    Article  Google Scholar 

  72. Hao F, Xiaoqi Z, Wenli L, Jian W (2020) Long non-coding RNA SLC16A1-AS1: its multiple tumorigenesis features and regulatory role in cell cycle in oral squamous cell carcinoma. Cell Cycle 19:1641–1653

    Article  Google Scholar 

  73. Guang-hui Li, Zhong-hui Ma, Xi W (2019) Long non-coding RNA CCAT1 is a prognostic biomarker for the progression of oral squamous cell carcinoma via miR-181a-mediated Wnt / β -catenin signaling pathway. Cell Cycle 18:2902–2913

    Article  Google Scholar 

  74. Yojiro K, Takeshi T (2020) Long noncoding RNA ANROC on the INK4 locus functions to suppress cell proliferation. Cancer Genomics Proteomics 17:425–430

    Article  Google Scholar 

  75. Ji LC, Chun LS, Chieh YC, Wen CH, Wei CK (2012) Exploiting salivary miR-31 as a clinical biomarker of oral squamous cell carcinoma. Head Neck 34:219–224

    Article  Google Scholar 

  76. Zahran F, Ghalwash D, Shaker O, Al-Johani K, Scully C (2015) Salivary microRNAs in oral cancer. Oral Dis 21:739–747

    Article  CAS  PubMed  Google Scholar 

  77. Momen-Heravi F, Trachtenberg AJ, Kuo WP, Cheng YS (2014) Genomewide Study of Salivary MicroRNAs for detection of oral cancer. J Dent Res 93:86S-93S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kai-feng H et al (2016) MicroRNA-31 upregulation predicts increased risk of progression of oral potentially malignant disorder. Oral Oncol 53:42–47

    Article  Google Scholar 

  79. Duz Mehmet Bugrahan et al. (2016) Identification of miR-139–5p as a saliva biomarker for tongue squamous cell carcinoma a pilot study. Cell Oncol 39(2): 187–193

  80. Ries Jutta et al. 2014 MiR-186 miR-3651 and miR-494 Potential biomarkers for oral squamous cell carcinoma extracted from whole blood. 31(3): 1429–1436.

  81. Qiuqin W (2016) Association of decreased expression of serum miR-9 with poor prognosis of oral squamous cell carcinoma patients. Med Sci Monit 22:289–294

    Article  Google Scholar 

  82. Hirohiko T, Ri S, Yuji T, Xuhong Z, Yukie Y (2016) Circulating miR-223 in oral cancer its potential as a novel diagnostic biomarker and therapeutic target. PLoS ONE. https://doi.org/10.1371/journal.pone.0159693

    Article  Google Scholar 

  83. Lu Ya Ching et al. 2015 Combined determination of circulating miR-196a and miR-196b levels produces high sensitivity and specificity for early detection of oral cancer. Clin Biochem 48(3): 115–121

  84. Chung-ji Liu et al (2016) Plasma miR-187 is a potential biomarker for oral carcinoma. Clin Oral Investig. https://doi.org/10.1007/s00784-016-1887-z

    Article  Google Scholar 

  85. Patricia S et al (2015) Small RNAs in metastatic and non-metastatic oral squamous cell carcinoma. BMC Med Genomics. https://doi.org/10.1186/s12903-015-0084-9

    Article  Google Scholar 

  86. Huanxi X, Yuqi Y, Hongmei Z, Xuguang Y, Luo Y (2015) Serum miR-483–5p : a novel diagnostic and prognostic biomarker for patients with oral squamous cell carcinoma. Tumor Biol. https://doi.org/10.1007/s13277-015-3514-z

    Article  Google Scholar 

  87. Hidenori T et al (2015) Genome-wide analysis of long noncoding RNA turnover. Methods Mol Biol 1262:305–320

    Article  Google Scholar 

  88. Merdan F et al (2016) Do circulating long non-coding RNAs (lncRNAs) (LincRNA-p21, GAS 5, HOTAIR) predict the treatment response in patients with head and neck cancer treated with chemoradiotherapy? Tumor Biol 37:3969–3978

    Article  Google Scholar 

  89. Chae Young Kwang et al. 2016 Concordance between genomic alterations assessed by next-generation sequencing in tumor tissue or circulating cell-free DNA. Oncotarget 7(40): 65364-65373.

  90. Patel Aditi et al. Salivary exosomal miR-1307–5p predicts disease aggressiveness and poor prognosis in oral squamous cell carcinoma patients. bioRxiv 2022; 2022.07.13.499918.

  91. Aditi P et al (2023) A novel 3-miRNA network regulates tumour progression in oral squamous cell carcinoma. Biomark Res 11:1–14

    Google Scholar 

  92. Nikolay M et al (2021) Salivary miR-30c-5p as potential biomarker for detection of oral squamous cell carcinoma. Biomedicines 9:1–14

    Google Scholar 

  93. Chiara R et al (2021) Genome-wide study of salivary miRNAs identifies miR-423-5p as promising diagnostic and prognostic biomarker in oral squamous cell carcinoma. Theranostics 11:2987–2999

    Article  Google Scholar 

  94. Cheng Ann-joy et al. Systemic Investigation Identifying Salivary miR-196b as a Promising Biomarker for Early Detection of Head-Neck Cancer and Oral Precancer Lesions. 2021; 1–13.

  95. Koopaie Maryam, Manifar Soheila, Lahiji Shahab Shokouhi. 2021 Assessment of MicroRNA-15a and MicroRNA-16–1 Salivary Level in Oral Squamous Cell Carcinoma Patients. MicroRNA 10: 74–79.

  96. Lihong He et al (2020) Salivary exosomal miR-24-3p serves as a potential detective biomarker for oral squamous cell carcinoma screening. Biomed Pharmacother 121:109553

    Article  Google Scholar 

  97. Tar Ildik, Kiss Csongor. Biomarkers in Patients with Oral Squamous Cell Carcinoma. 2022; 1–13.

  98. Hasan ASM, Mohamed GS, Gamil SO, El AS, Omar ZS (2018) Evaluating the accuracy of microRNA27b and microRNA137 as biomarkers of activity and potential malignant transformation in oral lichen planus patients. Arch Dermatol Res 310:209–220

    Article  Google Scholar 

  99. Fadhil Rushdi S, Wei Ming Q, Dimitrios N, David G, Nair RG (2020) Salivary microRNA miR-let-7a-5p and miR-3928 could be used as potential diagnostic bio-markers for head and neck squamous cell carcinoma. PLoS One 15:1–12

    Google Scholar 

  100. Masoumeh M et al (2023) Salivary level of microRNA-146a and microRNA-155 biomarkers in patients with oral lichen planus versus oral squamous cell carcinoma. BMC Oral Health 23:1–9

    Google Scholar 

  101. Zhao Si Y, Jun W, Bo OS, Kun HZ, Lan L (2018) Salivary Circular RNAs Hsa-Circ-0001874 and Hsa-Circ-0001971 as novel biomarkers for the diagnosis of oral squamous cell carcinoma. Cell Physiol Biochem 47:2511–2521

    Article  Google Scholar 

  102. Jianbo S et al (2019) Serum miR-626 and miR-5100 are promising prognosis predictors for oral squamous cell carcinoma. Theranostics 9:920–931

    Article  Google Scholar 

  103. Yi-an C, Shun-long W, Shun-fa Y, Chih-hung C (2018) A Three – MicroRNA signature as a potential biomarker for the early detection of oral cancer. Int J Mol Sci. https://doi.org/10.3390/ijms19030758

    Article  Google Scholar 

  104. Yan Y et al (2017) Circulating miRNAs as biomarkers for oral squamous cell carcinoma recurrence in operated patients. Oncotarget 8:8206–8214

    Article  PubMed  Google Scholar 

  105. Chen Ching Mei et al. 2021 Exosome-derived microRNAs in oral squamous cell carcinomas impact disease prognosis. Oral Oncol 120: 105402

  106. Singh Pooja et al. 2018 Circulating MicroRNA-21 Expression as a Novel Serum Biomarker for Oral Sub-Mucous Fibrosis and Oral Squamous Cell Carcinoma. 19: 1053–1058.

  107. Chen Liang et al. Diagnostic and prognostic value of serum miR-99a expression in oral squamous cell carcinoma un co rre ct pr oo f v er si on co rre ct ed pr oo. 2018; 1: 1–7.

  108. Karimi Abbas, Bahrami Naghmeh, Sayedyahossein Amirsalar, Derakhshan Samira. Evaluation of circulating serum 3 types of microRNA as biomarkers of oral squamous cell carcinoma ; A pilot study. 2019; 1–6.

  109. Farzaneh B et al (2021) Early diagnosis of oral squamous cell carcinoma (OSCC) by miR-138 and miR-424–5p expression as a cancer marker. Asian Pac J Cancer Prev 22:2185–2189

    Article  Google Scholar 

  110. Wang Long-long et al. 2018 MiR-31 is a potential biomarker for diagnosis of head and neck squamous cell carcinoma. 11: 4339–4345

  111. Jutta R et al (2017) Prognostic significance of altered miRNA expression in whole blood of OSCC patients. Oncol Rep 37:3467–3474

    Article  Google Scholar 

  112. Sun Guan et al. 2018 Mir-200b-3p in plasma is a potential diagnostic biomarker in oral squamous cell carcinoma. Biomarkers 0: 137–141

  113. Tao He et al (2021) Plasma-derived exosomal microRNA-130a serves as a noninvasive biomarker for diagnosis and prognosis of oral squamous cell carcinoma. J Oncol. https://doi.org/10.1155/2021/5547911

    Article  PubMed  PubMed Central  Google Scholar 

  114. Elisabetta B et al (2022) Extracellular vesicles miR- ­ 210 as a potential biomarker for diagnosis and survival prediction of oral squamous cell carcinoma patients. J Oral Pathol Med 51(4):350–357

    Article  Google Scholar 

  115. Lili W, Hongguang S, Shiming Y (2021) MicroRNA-206 has a bright application prospect in the diagnosis of cases with oral cancer. J Cell Mol Med 25:8169–8173

    Article  Google Scholar 

  116. Sajjad B et al (2021) Role of miR153 and miR455-5p Expression in Oral Squamous Cell Carcinoma Isolated from Plasma. Asian Pacific J Cancer Prev 22:157–161

    Article  Google Scholar 

  117. Zhiyuan Lu et al (2019) miR-31-5p Is a Potential Circulating Biomarker and Therapeutic Target for Oral Cancer. Mol Ther - Nucleic Acids 16:471–480

    Article  Google Scholar 

  118. Hung Kai Feng et al. 2022 Identification of plasma hsa_circ_0000190 and 0001649 as biomarkers for predicting the recurrence and treatment response of patients with oral squamous cell carcinoma. J Chin Med Assoc 85: 431–437

  119. Yanwei Luo, Fengxia Liu, Jie Guo, Rong Gui (2020) Upregulation of circ _ 0000199 in circulating exosomes is associated with survival outcome in OSCC. Sci Rep. https://doi.org/10.1038/s41598-020-70747-y

    Article  Google Scholar 

  120. Fan Chun Mei et al. 2019 CircMAN1A2 could serve as a novel serum biomarker for malignant tumors. Cancer Science 11(7): 2180–2188.

  121. Bing X, Tao H, He Xin H, Xinlan GY (2019) A circular RNA derived from MMP9 facilitates oral squamous cell carcinoma metastasis through regulation of MMP9 mRNA stability. Cell Transplant 28:1614–1623

    Article  Google Scholar 

  122. Yao Y et al (2018) Circulating Long Noncoding RNAs as Biomarkers for Predicting Head and Neck Squamous Cell Carcinoma. Cell Physiol Biochem 50:1429–1440

    Article  CAS  PubMed  Google Scholar 

  123. Xinyu Z et al (2020) Up-regulation of plasma lncRNA CACS15 distinguished early-stage oral squamous cell carcinoma patient. Oral Dis 26:1619–1624

    Article  Google Scholar 

  124. Le Fei Ou, Yangqian LP, Xiaoming Z (2020) LncRNA NCK1-AS1 in plasma distinguishes oral ulcer from early-stage oral squamous cell carcinoma. J Biol Res 27:1–7

    Google Scholar 

  125. Chunmei F et al (2020) Upregulation of long non-coding RNA LOC284454 may serve as a new serum diagnostic biomarker for head and neck cancers. BMC Cancer 20:917

    Article  Google Scholar 

  126. Panpan Z et al (2019) LncRNA PAPAS promotes oral squamous cell carcinoma by upregulating transforming growth factor-β1. J Cell Biochem 120:16120–16127

    Article  Google Scholar 

  127. Huan Shen et al (2020) MIR4435 - 2HG regulates cancer cell behaviors in oral squamous cell carcinoma cell growth by upregulating TGF - β1. Odontology. https://doi.org/10.1007/s10266-020-00488-x

    Article  Google Scholar 

  128. Shieh Tzong Ming et al. 2021 Lack of salivary long non‐coding rna xist expression is associated with increased risk of oral squamous cell carcinoma a cross‐sectional study. J Clin Med Doi: https://doi.org/10.3390/jcm10194622

Download references

Acknowledgements

The authors thank Yenepoya Research Centre, Yenepoya (Deemed to be University) for providing the infrastructure required for the research and University Library facility. R. C. Koumar acknowledges the receipt of the Seed grant (YU/Seed Grant/ 090-2020) from Yenepoya (Deemed to be University). Asrarunissa Kalmatta acknowledges the support from Srinivas Institute of Physiotherapy, Mangaluru, Karnataka and Yenepoya (Deemed to be University), Mangaluru, Karnataka.

Funding

This review/study did not receive any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrahas Koumar Ratnacaram.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Ethical approval

This article does not contain any studies with animals/humans performed by any of the authors.

Informed consent

There is no recruitment of subjects/patients for this study, hence not included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalmatte, A., Rekha, P.D. & Ratnacaram, C.K. Emerging cell cycle related non-coding RNA biomarkers from saliva and blood for oral squamous cell carcinoma. Mol Biol Rep 50, 9479–9496 (2023). https://doi.org/10.1007/s11033-023-08791-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08791-w

Keywords

Navigation