Skip to main content

Advertisement

Log in

Knockdown of LIMD2 inhibits the progression of ovarian carcinoma through ERK1/2 pathway

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The incidence rate of ovarian carcinoma (OC) is the third of the female reproductive system malignant tumors, while its mortality rate ranks first among causes of female reproductive system tumor related death in the world.

Methods

In the present research, we investigated the specific role of LIMD2 through LIMD2 knockdown in OC cells.

Results

The results of online analysis and expression detection proved that LIMD2 was up-regulated in human OC tissues and cells. Knockdown of LIMD2 inhibited the proliferation, migration and invasion in OC cells. LIMD2 knockdown promoted the apoptosis, as well as the expression of Cleaved-Caspase3 and Bax. Importantly, knockdown of LIMD2 promotes cell autophagy. LC3-II/I ratio and Beclin1 expression increased in LIMD2 knockdown cells, while P62 expression declined in LIMD2 knockdown cells. Additionally, the phosphorylation of ERK1/2 was inhibited by the knockdown of LIMD2 in SKOV3 and OVCAR3 cells.

Conclusion

Knockdown of LIMD2 inhibits cell proliferation, migration, invasion and autophagy, and promotes the apoptosis through the ERK1/2 signaling pathway, suggesting that LIMD2-siRNA may be an effective molecule to prevent OC progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Temkin SM, Bergstrom J, Samimi G, Minasian L (2017) Ovarian Cancer Prevention in high-risk women. Clin Obstet Gynecol 60(4):738–757

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stewart C, Ralyea C, Lockwood S (2019) Ovarian Cancer: an Integrated Review. Semin Oncol Nurs 35(2):151–156

    Article  PubMed  Google Scholar 

  3. Kossaï M, Leary A, Scoazec JY, Genestie C (2018) Ovarian Cancer: a heterogeneous disease. Pathobiology 85(1–2):41–49

    Article  PubMed  Google Scholar 

  4. Yang Q, Yang Y, Zhou N, Tang K, Lau WB, Lau B et al (2018) Epigenetics in ovarian cancer: premise, properties, and perspectives. Mol Cancer 17(1):109

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pinheiro Dos Santos MJC, Bastos AU, da Costa VR, Delcelo R, Lindsey SC, Colozza-Gama GA et al (2018) LIMD2 is overexpressed in BRAF V600E-Positive papillary thyroid carcinomas and matched Lymph Node Metastases. Endocr Pathol 29(3):222–230

    Article  CAS  PubMed  Google Scholar 

  6. Cerutti JM, Oler G, Michaluart P Jr, Delcelo R, Beaty RM, Shoemaker J et al (2007) Molecular profiling of matched samples identifies biomarkers of papillary thyroid carcinoma lymph node metastasis. Cancer Res 67(16):7885–7892

    Article  CAS  PubMed  Google Scholar 

  7. Peng H, Talebzadeh-Farrooji M, Osborne MJ, Prokop JW, McDonald PC, Karar J et al (2014) LIMD2 is a small LIM-only protein overexpressed in metastatic lesions that regulates cell motility and tumor progression by directly binding to and activating the integrin-linked kinase. Cancer Res 74(5):1390–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang F, Li Z, Xu L, Li Y, Li Y, Zhang X et al (2018) LIMD2 targeted by miR–34a promotes the proliferation and invasion of non–small cell lung cancer cells. Mol Med Rep 18(5):4760–4766

    CAS  PubMed  Google Scholar 

  9. Zhang F, Qin S, Xiao X, Tan Y, Hao P, Xu Y (2019) Overexpression of LIMD2 promotes the progression of non-small cell lung cancer. Oncol Lett 18(2):2073–2081

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45(W1):W98–w102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kroeger PT Jr, Drapkin R (2017) Pathogenesis and heterogeneity of ovarian cancer. Curr Opin Obstet Gynecol 29(1):26–34

    Article  PubMed  Google Scholar 

  12. Matthews JM, Lester K, Joseph S, Curtis DJ (2013) LIM-domain-only proteins in cancer. Nat Rev Cancer 13(2):111–122

    Article  CAS  PubMed  Google Scholar 

  13. Ganta VC, Annex BH (2017) LMO2 (LIM domain only 2) and endothelial cell Migration in Developmental and postnatal angiogenesis. Arterioscler Thromb Vasc Biol 37(10):1806–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sala S, Ampe C (2018) An emerging link between LIM domain proteins and nuclear receptors. Cell Mol Life Sci 75(11):1959–1971

    Article  CAS  PubMed  Google Scholar 

  15. Winkelman JD, Anderson CA, Suarez C, Kovar DR, Gardel ML (2020) Evolutionarily diverse LIM domain-containing proteins bind stressed actin filaments through a conserved mechanism. Proc Natl Acad Sci U S A 117(41):25532–25542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xie Y, Ostriker AC, Jin Y, Hu H, Sizer AJ, Peng G et al (2019) LMO7 is a negative Feedback Regulator of transforming growth factor β signaling and fibrosis. Circulation 139(5):679–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wade AK, Liu Y, Bethea MM, Toren E, Tse HM, Hunter CS (2019) LIM-domain transcription complexes interact with ring-finger ubiquitin ligases and thereby impact islet β-cell function. J Biol Chem 294(31):11728–11740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen L, Qian J, You Q, Ma J (2021) LIM domain-containing 2 (LIMD2) promotes the progress of ovarian cancer via the focal adhesion signaling pathway. Bioengineered 12(2):10089–10100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Levine B, Kroemer G (2019) Biological Functions of Autophagy genes: a Disease Perspective. Cell 176(1–2):11–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kocaturk NM, Akkoc Y, Kig C, Bayraktar O, Gozuacik D, Kutlu O (2019) Autophagy as a molecular target for cancer treatment. Eur J Pharm Sci 134:116–137

    Article  CAS  PubMed  Google Scholar 

  21. Zhan L, Zhang Y, Wang W, Song E, Fan Y, Li J et al (2016) Autophagy as an emerging therapy target for ovarian carcinoma. Oncotarget 7(50):83476–83487

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhu H, Gan X, Jiang X, Diao S, Wu H, Hu J (2019) ALKBH5 inhibited autophagy of epithelial ovarian cancer through miR-7 and BCL-2. J Exp Clin Cancer Res 38(1):163

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cui L, Wang X, Zhao X, Kong C, Li Z, Liu Y et al (2019) The autophagy-related genes Beclin1 and LC3 in the prognosis of pancreatic cancer. Int J Clin Exp Pathol 12(8):2989–2996

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhu H, Qu Y (2020) Expression levels of ARHI and Beclin1 in thyroid cancer and their relationship with clinical pathology and prognosis. Oncol Lett 19(2):1241–1246

    CAS  PubMed  Google Scholar 

  25. Cao Y, Luo Y, Zou J, Ouyang J, Cai Z, Zeng X et al (2019) Autophagy and its role in gastric cancer. Clin Chim Acta 489:10–20

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Wang X, Zhang Y, Yu L, Zhu B, Wu S et al (2018) Vasculogenic mimicry and expression of ALDH1, Beclin1, and p16 correlate with metastasis and prognosis in oral squamous cell carcinoma. Int J Clin Exp Pathol 11(3):1599–1609

    PubMed  PubMed Central  Google Scholar 

  27. Yang M, Yang XM, Yin DH, Tang QL, Wang L, Huang C et al (2018) Beclin1 enhances cisplatin-induced apoptosis via bcl-2-modulated autophagy in laryngeal carcinoma cells Hep-2. Neoplasma 65(1):42–48

    Article  CAS  PubMed  Google Scholar 

  28. Bauvy C, Gane P, Arico S, Codogno P, Ogier-Denis E (2001) Autophagy delays sulindac sulfide-induced apoptosis in the human intestinal colon cancer cell line HT-29. Exp Cell Res 268(2):139–149

    Article  CAS  PubMed  Google Scholar 

  29. Xu X, Zhi T, Chao H, Jiang K, Liu Y, Bao Z et al (2018) ERK1/2/mTOR/Stat3 pathway-mediated autophagy alleviates traumatic brain injury-induced acute lung injury. Biochim Biophys Acta Mol Basis Dis 1864(5 Pt A):1663–1674

    Article  CAS  PubMed  Google Scholar 

  30. Huang K, Chen Y, Zhang R, Wu Y, Ma Y, Fang X et al (2018) Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis 9(2):157

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yuan Y, Ding D, Zhang N, Xia Z, Wang J, Yang H et al (2018) TNF-α induces autophagy through ERK1/2 pathway to regulate apoptosis in neonatal necrotizing enterocolitis model cells IEC-6. Cell Cycle 17(11):1390–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cagnol S, Chambard JC (2010) ERK and cell death: mechanisms of ERK-induced cell death–apoptosis, autophagy and senescence. Febs j 277(1):2–21

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was supported by Research Fund of New Medical Clinical Translation Workstation of Academician He Lin of Jining Medical College, Grant/Award Number: JYHL2019FMS15.

Author information

Authors and Affiliations

Authors

Contributions

Haiyang Hu has made substantial contributions to the conception and design of the work. Yanan Wang performed the experiments and wrote the paper. Yan Dong and Lin Wang assisted with the experiments, Yahui Chen and Yan Zhou assisted with the data analysis. Lin Sun helped analyzed the data and modify the paper. Each author has made substantial contributions to the acquisition, analysis, and interpretation of data.

Corresponding author

Correspondence to Lin Sun.

Ethics declarations

Ethics approval and consent to participate

This research study was approved by the Institutional Review Board of Affiliated Hospital of Jining Medical University.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests exist.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Wang, Y., Dong, Y. et al. Knockdown of LIMD2 inhibits the progression of ovarian carcinoma through ERK1/2 pathway. Mol Biol Rep 50, 8985–8993 (2023). https://doi.org/10.1007/s11033-023-08733-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08733-6

Keywords

Navigation