Skip to main content
Log in

HIF-1α–PPARγ–mTORC1 signaling pathway-mediated autophagy induces inflammatory response in pancreatic cells in rats with hyperlipidemic acute pancreatitis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Objective

The incidence of hyperlipidemic acute pancreatitis (HLAP) has rapidly increased in recent years in China. Autophagy has been implicated in the inflammatory response of pancreatic cells in HLAP, but the molecular mechanisms remain unclear.

Methods

In this study, the role of HIF-1α–PPARγ–mTORC1 pathway-mediated autophagy in the inflammatory response of pancreatic cells and the underlying molecular mechanism were investigated in a rat model of HLAP using immunohistochemistry, ELISA, electron microscopy, and western blot analysis.

Results

The results revealed that autophagy was significantly increased and pancreatic injury was exacerbated in HLAP rats, and the inflammatory response was further exacerbated by treatment with rapamycin but relieved by treatment with 3-MA. Hyperlipidemia induced upregulation of HIF-1α and downregulation of PPARγ, which in turn led to an increase in autophagy and consequently exacerbation of the inflammatory response of pancreatic cells.

Conclusions

HIF-1α–PPARγ–mTORC1 pathway-mediated autophagy plays a critical role in the inflammatory response of pancreatic cells in HLAP, and interference with the HIF-1α–PPARγ–mTOR pathway can serve as a new strategy for the prevention and treatment of HLAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The dataset supporting the conclusions of this article are included within the article.

Abbreviations

HLAP:

Hyperlipidemic acute pancreatitis

HIF-1α:

Hypoxia-inducible factor 1-alpha

mTORC1:

Mammalian Target of Rapamycin Complex 1

PPARγ:

Peroxisome proliferator-activated receptor-γ

Beclin-1:

Myosin-like BCL-2 interacting protein

LC3-II:

Microtubule-associated protein light chain 3-II

siRNA:

Small Interfering Ribonucleic Acid

3-MA:

3-methyladenine

TG:

Triglyceride

TC:

Total cholesterol

AMY:

Amylase

LPS:

Lipase

TNF-α:

Tumor necrosis factor-α

PI3K:

Phosphatidylinositol 3-kinase

Akt:

Protein kinase B

ROS:

Reactive oxygen species

ATG:

Autophagy related gene

References

  1. Huang YX, Jia L, Jiang SM et al (2014) Incidence and clinical features of hyperlipidemic acute pancreatitis from Guangdong, China: a retrospective multicenter study. Pancreas 43:548–552. https://doi.org/10.1097/mpa.0000000000000069

    Article  PubMed  Google Scholar 

  2. Sorice M (2022) Crosstalk of Autophagy and Apoptosis[J]. Cells. https://doi.org/10.3390/cells11091479

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gukovskaya AS, Gukovsky I, Algul H et al (2017) Autophagy, inflammation, and Immune Dysfunction in the pathogenesis of Pancreatitis[J]. Gastroenterology 153(5):1212–1226. https://doi.org/10.1053/j.gastro.2017.08.071

    Article  CAS  PubMed  Google Scholar 

  4. Noguchi M, Hirata N, Tanaka T et al (2020) Autophagy as a modulator of cell death machinery[J]. Cell Death Dis 11(7):517. https://doi.org/10.1038/s41419-020-2724-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Investig 115:2679–2688. https://doi.org/10.1172/jci26390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ohmuraya M, Yamamura K (2008) Autophagy and acute pancreatitis: a novel autophagy theory for trypsinogen activation. Autophagy 4:1060–1062. https://doi.org/10.4161/auto.6825

    Article  CAS  PubMed  Google Scholar 

  7. Gukovsky I, Gukovskaya AS (2010) Impaired autophagy underlies key pathological responses of acute pancreatitis. Autophagy 6:428–429. https://doi.org/10.4161/auto.6.3.11530

    Article  PubMed  Google Scholar 

  8. Fortunato F, Kroemer G (2009) Impaired autophagosome-lysosome fusion in the pathogenesis of pancreatitis. Autophagy 5:850–853. https://doi.org/10.4161/auto.8839

    Article  CAS  PubMed  Google Scholar 

  9. Mizushima N, Levine B, Cuervo AM et al (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075. https://doi.org/10.1038/nature06639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu B, Bai B, Sha S et al (2014) Interleukin-1beta induces autophagy by affecting calcium homeostasis and trypsinogen activation in pancreatic acinar cells. Int J Clin Exp Pathol 7:3620–3631

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Song Z, Huang Y, Liu C et al (2018) miR-352 participates in the regulation of trypsinogen activation in pancreatic acinar cells by influencing the function of autophagic lysosomes. Oncotarget 9:10868–10879. https://doi.org/10.18632/oncotarget.24220

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu MW, Wei R, Su MX et al (2018) Effects of Panax notoginseng saponins on severe acute pancreatitis through the regulation of mTOR/Akt and caspase-3 signaling pathway by upregulating miR-181b expression in rats. BMC Complement Altern Med 18:51. https://doi.org/10.1186/s12906-018-2118-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu ZD, Yu T, Liu HJ et al (2018) SOCE induced calcium overload regulates autophagy in acute pancreatitis via calcineurin activation. Cell Death Dis 9. https://doi.org/10.1038/s41419-017-0073-9

  14. Biczo G, Vegh ET, Shalbueva N et al (2018) Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models. Gastroenterology 154:689–703. https://doi.org/10.1053/j.gastro.2017.10.012

    Article  CAS  PubMed  Google Scholar 

  15. Dolai S, Liang T, Orabi AI et al (2018) Pancreatitis-Induced Depletion of Syntaxin 2 promotes autophagy and increases basolateral exocytosis. Gastroenterology 154:1805–1821. https://doi.org/10.1053/j.gastro.2018.01.025

    Article  CAS  PubMed  Google Scholar 

  16. Ji L, Li L, Qu F et al (2016) Hydrogen sulphide exacerbates acute pancreatitis by over-activating autophagy via AMPK/mTOR pathway. J Cell Mol Med 20:2349–2361. https://doi.org/10.1111/jcmm.12928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sun L, Zhang S, Yu C et al (2015) Hydrogen sulfide reduces serum triglyceride by activating liver autophagy via the AMPK-mTOR pathway. Am J Physiol Endocrinol metabolism 309:925–935. https://doi.org/10.1152/ajpendo.00294.2015

    Article  CAS  Google Scholar 

  18. Mei Q, Zeng Y, Huang C et al (2020) Rapamycin alleviates hypertriglyceridemia-related Acute Pancreatitis via restoring autophagy flux and inhibiting endoplasmic reticulum stress. Inflammation 43:1510–1523. https://doi.org/10.1007/s10753-020-01228-7

    Article  CAS  PubMed  Google Scholar 

  19. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335. https://doi.org/10.1038/nature09782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xiao H, Gu Z, Wang G et al (2013) The possible mechanisms underlying the impairment of HIF-1alpha pathway signaling in hyperglycemia and the beneficial effects of certain therapies. Int J Med Sci 10:1412–1421. https://doi.org/10.7150/ijms.5630

    Article  PubMed  PubMed Central  Google Scholar 

  21. Choi H, Merceron C, Mangiavini L et al (2016) Hypoxia promotes noncanonical autophagy in nucleus pulposus cells independent of MTOR and HIF1A signaling. Autophagy 12:1631–1646. https://doi.org/10.1080/15548627.2016.1192753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Warbrick I, Rabkin SW (2019) Hypoxia-inducible factor 1-alpha (HIF-1alpha) as a factor mediating the relationship between obesity and heart failure with preserved ejection fraction. Obes reviews: official J Int Association Study Obes 20:701–712. https://doi.org/10.1111/obr.12828

    Article  CAS  Google Scholar 

  23. Ji L, Guo X, Lv J et al (2019) Hypoxia-inducible Factor-1alpha Knockdown Plus glutamine supplementation attenuates the predominance of necrosis over apoptosis by relieving Cellular Energy stress in Acute Pancreatitis. Oxidative Med Cell Longev. https://doi.org/10.1155/2019/4363672

    Article  Google Scholar 

  24. Li HH, Tyburski JB, Wang YW et al (2014) Modulation of fatty acid and bile acid metabolism by peroxisome proliferator-activated receptor alpha protects against alcoholic liver disease. Alcohol Clin Exp Res 38:1520–1531. https://doi.org/10.1111/acer.12424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Niyaz B, Zhao KL, Liu LM et al (2013) Rosiglitazone attenuates the severity of hyperlipidemic severe acute pancreatitis in rats. Experimental and therapeutic medicine 6:989–994. https://doi.org/10.3892/etm.2013.1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Feng P, Xu Y, Tong B et al (2020) Saikosaponin a attenuates hyperlipidemic pancreatitis in rats via the PPAR-gamma/NF-kappaB signaling pathway. Experimental and therapeutic medicine 19:1203–1212. https://doi.org/10.3892/etm.2019.8324

    Article  CAS  PubMed  Google Scholar 

  27. Li D, Du Y, Yuan X et al (2017) Hepatic hypoxia-inducible factors inhibit PPARα expression to exacerbate acetaminophen induced oxidative stress and hepatotoxicity. Free Radic Biol Med 110:102–116. https://doi.org/10.1016/j.freeradbiomed.2017.06.002

    Article  CAS  PubMed  Google Scholar 

  28. He Y, Yang W, Gan L et al (2021) Silencing HIF-1α aggravates non-alcoholic fatty liver disease in vitro through inhibiting PPAR-α/ANGPTL4 singling pathway. Gastroenterol Hepatol 44:355–365. https://doi.org/10.1016/j.gastrohep.2020.09.014

    Article  PubMed  Google Scholar 

  29. Li X, Zhang Y, Zhang B et al (2018) HIF-1alpha-l-PGDS-PPARgamma regulates hypoxia-induced ANP secretion in beating rat atria. Prostaglandins Other Lipid mediat 134:38–46. https://doi.org/10.1016/j.prostaglandins.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  30. Zhao YZ, Liu XL, Shen GM et al (2014) Hypoxia induces peroxisome proliferator-activated receptor gamma expression via HIF-1-dependent mechanisms in HepG2 cell line. Arch Biochem Biophys 543:40–47. https://doi.org/10.1016/j.abb.2013.12.010

    Article  CAS  PubMed  Google Scholar 

  31. Vasheghani F, Zhang Y, Li YH et al (2015) PPARgamma deficiency results in severe, accelerated osteoarthritis associated with aberrant mTOR signalling in the articular cartilage. Ann Rheum Dis 74:569–578. https://doi.org/10.1136/annrheumdis-2014-205743

    Article  CAS  PubMed  Google Scholar 

  32. Li BH, Liao SQ, Yin YW et al (2015) Telmisartan-induced PPARgamma activity attenuates lipid accumulation in VSMCs via induction of autophagy. Mol Biol Rep 42:179–186. https://doi.org/10.1007/s11033-014-3757-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank National Natural Sciences Foundation of China ,Innovative and Entrepreneurial Doctor Program of Jiangsu Provincial, Top Talents Support Program for young and middle-aged people of Wuxi Health committee and The Scientific Research Project of Wuxi Health committee for their fnancial support.We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Funding

This work was supported by the National Natural Science Foundations of China (No. 81760334), Innovative and Entrepreneurial Doctor Program of Jiangsu Provincial, Top Talents Support Program for young and middle-aged people of Wuxi Health committee and The Scientific Research Project of Wuxi Health committee (Youth Project, No.Q201912).

Author information

Authors and Affiliations

Authors

Contributions

MYM and LXL contributed to the conception and design of the study, acquired the majority of the data, and drafted the manuscript.LZL contributed to the conception and design of the study and acquired some of the data. XXH contributed to the design of the study and interpretation of the data.WYP and MYC contributed to the design of the study, and interpretation of data, and substantively revised the manuscript. All the authors reviewed and approved the final draft of the manuscript.

Corresponding author

Correspondence to Yaping Wang.

Ethics declarations

Ethical approval and consent to participate

This study was conducted in accordance with the guidelines of the Declaration of Helsinki. All animal experimental protocols applied in this study were conducted in accordance with the standards of the Animal Ethics Committee of Huishan District People’s Hospital of Wuxi City, China.

Competing Interests

The authors declare no competing interests.

Additional information

Yumei Ma and Xiaolin Li contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Li, X., Liu, Z. et al. HIF-1α–PPARγ–mTORC1 signaling pathway-mediated autophagy induces inflammatory response in pancreatic cells in rats with hyperlipidemic acute pancreatitis. Mol Biol Rep 50, 8497–8507 (2023). https://doi.org/10.1007/s11033-023-08639-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08639-3

Keywords

Navigation