Skip to main content
Log in

Correlation between the dopaminergic system and inflammation disease: a review

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The dopaminergic system is inextricably linked with neurological diseases and addiction. In recent years, many studies have found that the dopaminergic system involves in inflammatory diseases, particularly neuroinflammatory diseases development; This review summarizes the studies of dopaminergic system in inflammatory diseases, and specifically highlights the mechanisms of how dopaminergic system regulates inflammation; In addition, we speculate that there are some cavities in current research, including mixed usage of inhibitors, agonists and lack of systematic controls; We expect this review would provide directions to future research of dopaminergic system and inflammatory diseases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The dopamine receptor tertiary structure data that support the findings of this study are available in/from AlphaFold Protein Structure Database (https://www.alphafold.ebi.ac.uk/). The expression levels of DRD1, DRD2, DRD3, DRD4 and DRD5 in different tissues data that support the findings of this study are available from The Human Protein Atlas (https://www.proteinatlas.org/).

References

  1. Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217. https://doi.org/10.1124/pr.110.002642

    Article  CAS  PubMed  Google Scholar 

  2. Pacheco R, Contreras F, Zouali M (2014) The dopaminergic system in autoimmune diseases. Front Immunol. https://doi.org/10.3389/fimmu.2014.00117

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cacabelos R (2017) Parkinson’s disease: from pathogenesis to pharmacogenomics. Int J Mol Sci. https://doi.org/10.3390/ijms18030551

    Article  PubMed  PubMed Central  Google Scholar 

  4. Barry SJ, Gaughan TM, Hunter R (2012) Schizophrenia. BMJ clinical evidence. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385413/

  5. Daubner SC, Le T, Wang S (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 508:1–12. https://doi.org/10.1016/j.abb.2010.12.017

    Article  CAS  PubMed  Google Scholar 

  6. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435. https://doi.org/10.1038/nature07201

    Article  CAS  PubMed  Google Scholar 

  7. Shimojo G, Joseph B, Shah R, Consolim-Colombo FM, De Angelis K, Ulloa L (2019) Exercise activates vagal induction of dopamine and attenuates systemic inflammation. Brain Behav Immun 75:181–191. https://doi.org/10.1016/j.bbi.2018.10.005

    Article  CAS  PubMed  Google Scholar 

  8. Volkow ND, Wise RA, Baler R (2017) The dopamine motive system: implications for drug and food addiction. Nat Rev Neurosci 18:741–752. https://doi.org/10.1038/nrn.2017.130

    Article  CAS  PubMed  Google Scholar 

  9. Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG, Dopamine (2019) Functions, signaling, and Association with neurological Diseases. Cell Mol Neurobiol 39:31–59. https://doi.org/10.1007/s10571-018-0632-3

    Article  PubMed  Google Scholar 

  10. Felger JC, Treadway MT (2017) Inflammation effects on motivation and motor activity: role of dopamine. Neuropsychopharmacology 42:216–241. https://doi.org/10.1038/npp.2016.143

    Article  CAS  PubMed  Google Scholar 

  11. Felger JC (2017) The role of dopamine in inflammation-associated depression: mechanisms and therapeutic implications. Curr Top Behav Neurosci 31:199–219. https://doi.org/10.1007/7854_2016_13

    Article  CAS  PubMed  Google Scholar 

  12. Torres-Rosas R, Yehia G, Peña G, Mishra P, del Rocio Thompson-Bonilla M, Moreno-Eutimio MA et al (2014) Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nat Med 20:291–295. https://doi.org/10.1038/nm.3479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z et al (2015) Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160:62–73. https://doi.org/10.1016/j.cell.2014.11.047

    Article  CAS  PubMed  Google Scholar 

  14. Nam E, Derrick JS, Lee S, Kang J, Han J, Lee SJC et al (2018) Regulatory activities of dopamine and its derivatives toward metal-free and metal-induced amyloid-β aggregation, oxidative stress, and inflammation in alzheimer’s disease. ACS Chem Neurosci 9:2655–2666. https://doi.org/10.1021/acschemneuro.8b00122

    Article  CAS  PubMed  Google Scholar 

  15. Hwang JS, An JM, Cho H, Lee SH, Park JH, Han IO (2015) A dopamine-alpha-lipoic acid hybridization compound and its acetylated form inhibit LPS-mediated inflammation. Eur J Pharmacol 746:41–49. https://doi.org/10.1016/j.ejphar.2014.10.052

    Article  CAS  PubMed  Google Scholar 

  16. Gingrich JA, Caron MG (1993) Recent advances in the molecular biology of dopamine receptors. Annu Rev Neurosci 16:299–321. https://doi.org/10.1146/annurev.ne.16.030193.001503

    Article  CAS  PubMed  Google Scholar 

  17. Martel JC, Gatti McArthur S (2020) Dopamine receptor subtypes, physiology and pharmacology: new ligands and concepts in schizophrenia. Front Pharmacol 11:1003. https://doi.org/10.3389/fphar.2020.01003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takeuchi Y, Fukunaga K (2004) Different activation of NF-kappaB by stimulation of dopamine D2L and D2S receptors through calcineurin activation. J Neurochem 90:155–163. https://doi.org/10.1111/j.1471-4159.2004.02476.x

    Article  CAS  PubMed  Google Scholar 

  19. Joober R, Toulouse A, Benkelfat C, Lal S, Bloom D, Labelle A et al (2000) DRD3 and DAT1 genes in schizophrenia: an association study. J Psychiatr Res 34:285–291. https://doi.org/10.1016/s0022-3956(00)00018-2

    Article  CAS  PubMed  Google Scholar 

  20. Ebstein RP, Macciardi F, Heresco-Levi U, Serretti A, Blaine D, Verga M et al (1997) Evidence for an association between the dopamine D3 receptor gene DRD3 and schizophrenia. Human Hered 47:6–16. https://doi.org/10.1159/000154382

    Article  CAS  Google Scholar 

  21. Van Tol HH, Wu CM, Guan HC, Ohara K, Bunzow JR, Civelli O et al (1992) Multiple dopamine D4 receptor variants in the human population. Nature 358:149–152. https://doi.org/10.1038/358149a0

    Article  PubMed  Google Scholar 

  22. Bergen AW, Javitz HS, Su L, He Y, Conti DV, Benowitz NL et al (2013) The DRD4 exon III VNTR, bupropion, and associations with prospective abstinence. Nicot Tob Res 15:1190–1200. https://doi.org/10.1093/ntr/nts245

    Article  CAS  Google Scholar 

  23. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225. https://doi.org/10.1152/physrev.1998.78.1.189

    Article  CAS  PubMed  Google Scholar 

  24. Maramai S, Gemma S, Brogi S, Campiani G, Butini S, Stark H et al (2016) Dopamine D3 receptor antagonists as potential therapeutics for the treatment of neurological diseases. Front Neurosci. https://doi.org/10.3389/fnins.2016.00451

    Article  PubMed  PubMed Central  Google Scholar 

  25. Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N et al (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucl Acids Res 47:W636. https://doi.org/10.1093/nar/gkz268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kooistra AJ, Mordalski S, Pándy-Szekeres G, Esguerra M, Mamyrbekov A, Munk C et al (2021) GPCRdb in 2021: integrating GPCR sequence, structure and function. Nucl Acids Res 49:D335. https://doi.org/10.1093/nar/gkaa1080

    Article  CAS  PubMed  Google Scholar 

  27. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O et al (2021) Highly accurate protein structure prediction with alphafold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Beaulieu JM, Del’guidice T, Sotnikova TD, Lemasson M, Gainetdinov RR (2011) Beyond cAMP: the regulation of akt and GSK3 by dopamine receptors. Front Mol Neurosci 4:38. https://doi.org/10.3389/fnmol.2011.00038

    Article  PubMed  PubMed Central  Google Scholar 

  29. Perreault ML, Hasbi A, O’Dowd BF, George SR (2014) Heteromeric dopamine receptor signaling complexes: emerging neurobiology and disease relevance. Neuropsychopharmacology 39:156–168. https://doi.org/10.1038/npp.2013.148

    Article  CAS  PubMed  Google Scholar 

  30. Osorio-Barrios F, Navarro G, Campos J, Ugalde V, Prado C, Raïch I et al (2021) The Heteromeric Complex formed by dopamine receptor D(5) and CCR9 leads the gut homing of CD4(+) T cells upon inflammation. Cell Mol Gastroenterol Hepatol 12:489–506. https://doi.org/10.1016/j.jcmgh.2021.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Du RH, Zhou Y, Xia ML, Lu M, Ding JH, Hu G (2018) α-Synuclein disrupts the anti-inflammatory role of Drd2 via interfering β-arrestin2-Table 1 interaction in astrocytes. J Neuroinflamm 15:258. https://doi.org/10.1186/s12974-018-1302-6

    Article  CAS  Google Scholar 

  32. Han X, Li B, Ye X, Mulatibieke T, Wu J, Dai J et al (2017) Dopamine D(2) receptor signalling controls inflammation in acute pancreatitis via a PP2A-dependent Akt/NF-κB signalling pathway. Br J Pharmacol 174:4751–4770. https://doi.org/10.1111/bph.14057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu Y, Hu Y, Wang B, Li S, Ma C, Liu X et al (2020) Dopamine uses the DRD5-ARRB2-PP2A signaling axis to block the TRAF6-mediated NF-κB pathway and suppress systemic inflammation. Mol Cell 78:42–56. https://doi.org/10.1016/j.molcel.2020.01.022

    Article  CAS  PubMed  Google Scholar 

  34. Sjöstedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N, Adori C et al (2020) An atlas of the protein-coding genes in the human, pig, and mouse brain. Science. https://doi.org/10.1126/science.aay5947

    Article  PubMed  Google Scholar 

  35. Matt SM, Gaskill PJ (2020) Where is dopamine and how do Immune cells see it?: dopamine-mediated immune cell function in health and disease. J Neuroimmun Pharmacol 15:114–164. https://doi.org/10.1007/s11481-019-09851-4

    Article  CAS  Google Scholar 

  36. Liu A, Ding S (2019) Anti-inflammatory effects of dopamine in lipopolysaccharide (LPS)-stimulated RAW264.7 cells via inhibiting NLRP3 inflammasome activation. Ann Clin Lab Sci 49:353–360

    CAS  PubMed  Google Scholar 

  37. Cao JY, Zhou LT, Li ZL, Yang Y, Liu BC, Liu H (2020) Dopamine D1 receptor agonist A68930 attenuates acute kidney injury by inhibiting NLRP3 inflammasome activation. J Pharmacol Sci 143:226–233. https://doi.org/10.1016/j.jphs.2020.04.005

    Article  CAS  PubMed  Google Scholar 

  38. Wang T, Nowrangi D, Yu L, Lu T, Tang J, Han B et al (2018) Activation of dopamine D1 receptor decreased NLRP3-mediated inflammation in intracerebral hemorrhage mice. J Neuroinflamm 15:2. https://doi.org/10.1186/s12974-017-1039-7

    Article  CAS  Google Scholar 

  39. Liu J, Jin Y, Wang B, Wang Y, Zuo S, Zhang J (2021) Dopamine D1 receptor alleviates doxorubicin-induced cardiac injury by inhibiting NLRP3 inflammasome. Biochem Biophys Res Commun 561:7–13. https://doi.org/10.1016/j.bbrc.2021.04.098

    Article  CAS  PubMed  Google Scholar 

  40. Zager A, Brandão WN, Margatho RO, Peron JP, Tufik S, Andersen ML et al (2018) The wake-promoting drug modafinil prevents motor impairment in sickness behavior induced by LPS in mice: role for dopaminergic D1 receptor. Prog Neuro-psychopharmacol Biol Psychiatr 81:468–476. https://doi.org/10.1016/j.pnpbp.2017.05.003

    Article  CAS  Google Scholar 

  41. Feketeova E, Li Z, Joseph B, Shah R, Spolarics Z, Ulloa L (2018) Dopaminergic control of inflammation and glycemia in sepsis and diabetes. Front Immunol 9:943. https://doi.org/10.3389/fimmu.2018.00943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shao W, Zhang SZ, Tang M, Zhang XH, Zhou Z, Yin YQ et al (2013) Suppression of neuroinflammation by astrocytic dopamine D2 receptors via αB-crystallin. Nature 494:90–94. https://doi.org/10.1038/nature11748

    Article  CAS  PubMed  Google Scholar 

  43. Winland CD, Welsh N, Sepulveda-Rodriguez A, Vicini S, Maguire-Zeiss KA (2017) Inflammation alters AMPA-stimulated calcium responses in dorsal striatal D2 but not D1 spiny projection neurons. Eur J Neurosci 46:2519–2533. https://doi.org/10.1111/ejn.13711

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang Y, Chen Y, Wu J, Manaenko A, Yang P, Tang J et al (2015) Activation of dopamine D2 receptor suppresses neuroinflammation through αB-crystalline by inhibition of NF-κB nuclear translocation in experimental ICH mice model. Stroke 46:2637–2646. https://doi.org/10.1161/strokeaha.115.009792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ye X, Han X, Li B, Dai J, Wu Z, He Y et al (2020) Dopamine D2 receptor activator quinpirole protects against trypsinogen activation during acute pancreatitis via upregulating HSP70. Am J Physiol Gastrointest liver Physiol 318:G1000. https://doi.org/10.1152/ajpgi.00354.2019

    Article  CAS  PubMed  Google Scholar 

  46. Sullivan RM, Talangbayan H, Einat H, Szechtman H (1998) Effects of quinpirole on central dopamine systems in sensitized and non-sensitized rats. Neuroscience 83:781–789. https://doi.org/10.1016/s0306-4522(97)00412-0

    Article  CAS  PubMed  Google Scholar 

  47. Gehlert DR, Gackenheimer SL, Seeman P, Schaus J (1992) Autoradiographic localization of [3H] quinpirole binding to dopamine D2 and D3 receptors in rat brain. Eur J Pharmacol 211:189–194. https://doi.org/10.1016/0014-2999(92)90528-c

    Article  CAS  PubMed  Google Scholar 

  48. Han X, Ni J, Wu Z, Wu J, Li B, Ye X et al (2020) Myeloid-specific dopamine D(2) receptor signalling controls inflammation in acute pancreatitis via inhibiting M1 macrophage. Br J Pharmacol 177:2991–3008. https://doi.org/10.1111/bph.15026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang Y, Cuevas S, Asico LD, Escano C, Yang Y, Pascua AM et al (2012) Deficient dopamine D2 receptor function causes renal inflammation independently of high blood pressure. PLoS ONE 7:e38745. https://doi.org/10.1371/journal.pone.0038745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Konkalmatt PR, Asico LD, Zhang Y, Yang Y, Drachenberg C, Zheng X et al (2016) Renal rescue of dopamine D2 receptor function reverses renal injury and high blood pressure. JCI insight https://doi.org/10.1172/jci.insight.85888

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jiang X, Konkalmatt P, Yang Y, Gildea J, Jones JE, Cuevas S et al (1979) Single-nucleotide polymorphisms of the dopamine D2 receptor increase inflammation and fibrosis in human renal proximal tubule cells. Hypertension 63:74–80. https://doi.org/10.1161/hypertensionaha.113.02569

    Article  Google Scholar 

  52. Lu JH, Liu YQ, Deng QW, Peng YP, Qiu YH (2015) Dopamine D2 receptor is involved in alleviation of Type II collagen-induced arthritis in mice. BioMed Res Int 2015:496759

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang X, Villar VA, Tiu A, Upadhyay KK, Cuevas S (2018) Dopamine D2 receptor upregulates leptin and IL-6 in adipocytes. J Lipid Res 59:607–614. https://doi.org/10.1194/jlr.M081000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yue S, Wang T, Yang Y, Fan Y, Zhou L, Li M et al (2021) Lipopolysaccharide/D-galactosamine-induced acute liver injury could be attenuated by dopamine receptor agonist rotigotine via regulating NF-κB signaling pathway. Int Immunopharmacol 96:107798. https://doi.org/10.1016/j.intimp.2021.107798

    Article  CAS  PubMed  Google Scholar 

  55. Montoya A, Elgueta D, Campos J, Chovar O, Falcón P, Matus S et al (2019) Dopamine receptor D3 signalling in astrocytes promotes neuroinflammation. J Neuroinflamm 16:258. https://doi.org/10.1186/s12974-019-1652-8

    Article  CAS  Google Scholar 

  56. Thomas Broome S, Fisher T, Faiz A, Keay KA, Musumeci G, Al-Badri G et al (2021) Assessing the anti-inflammatory activity of the Anxiolytic Drug Buspirone using CRISPR-Cas9 gene editing in LPS-Stimulated BV-2 microglial cells. Cells.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ugalde V, Contreras F, Prado C, Chovar O, Espinoza A, Pacheco R (2021) Dopaminergic signalling limits suppressive activity and gut homing of regulatory T cells upon intestinal inflammation. Mucosal Immunol 14:652–666. https://doi.org/10.1038/s41385-020-00354-7

    Article  CAS  PubMed  Google Scholar 

  58. Contreras F, Prado C, González H, Franz D, Osorio-Barrios F, Osorio F et al (1950) Dopamine Receptor D3 Signaling on CD4 + T Cells Favors Th1- and Th17-Mediated Immunity. J Immunol 196:4–9. https://doi.org/10.4049/jimmunol.1502420

    Article  CAS  Google Scholar 

  59. González H, Contreras F, Prado C, Elgueta D, Franz D, Bernales S et al (1950) Dopamine receptor D3 expressed on CD4 + T cells favors neurodegeneration of dopaminergic neurons during parkinson’s disease. J Immunol 190:5048–56. https://doi.org/10.4049/jimmunol.1203121

    Article  CAS  Google Scholar 

  60. Wang J, Jia Y, Li G, Wang B, Zhou T, Zhu L et al (2018) The dopamine receptor D3 regulates Lipopolysaccharide-Induced Depressive-Like Behavior in mice. Int J Neuropsychopharmacol 21:448–460. https://doi.org/10.1093/ijnp/pyy005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang Z, Guan W, Han Y, Ren H, Tang X, Zhang H et al (2015) Stimulation of dopamine D3 receptor attenuates renal ischemia-reperfusion Injury via increased linkage with Gα12. Transplantation 99:2274–2284. https://doi.org/10.1097/tp.0000000000000762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kvernmo T, Härtter S, Burger E (2006) A review of the receptor-binding and pharmacokinetic properties of dopamine agonists. Clin Ther 28:1065–1078. https://doi.org/10.1016/j.clinthera.2006.08.004

    Article  CAS  PubMed  Google Scholar 

  63. Sautel F, Griffon N, Lévesque D, Pilon C, Schwartz JC, Sokoloff P (1995) A functional test identifies dopamine agonists selective for D3 versus D2 receptors. Neuroreport 6:329–332. https://doi.org/10.1097/00001756-199501000-00026

    Article  CAS  PubMed  Google Scholar 

  64. Wang W, Cohen JA, Wallrapp A, Trieu KG, Barrios J, Shao F et al (2019) Age-related dopaminergic innervation augments T helper 2-Type allergic inflammation in the postnatal lung. Immunity 51:1102–1118. https://doi.org/10.1016/j.immuni.2019.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Arce-Sillas A, Sevilla-Reyes E, Álvarez-Luquín DD, Guevara-Salinas A, Boll MC, Pérez-Correa CA et al (2019) Expression of dopamine receptors in Immune Regulatory cells. Neuroimmunomodulation 26:159–166. https://doi.org/10.1159/000501187

    Article  CAS  PubMed  Google Scholar 

  66. Liu Q, Zhang R, Zhang X, Liu J, Wu H, Li Y et al (2021) Dopamine improves chemotherapeutic efficacy for pancreatic cancer by regulating macrophage-derived inflammations. Cancer Immunol Immunother 70:2165–2177. https://doi.org/10.1007/s00262-020-02816-0

    Article  CAS  PubMed  Google Scholar 

  67. Wu ZH, Tang Y, Yu H, Li HD (2021) The role of ferroptosis in breast cancer patients: a comprehensive analysis. Cell Death Discov 7:93. https://doi.org/10.1038/s41420-021-00473-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Akbarian F, Abolhasani M, Dadkhah F, Asadi F, Ahangari G (2019) Novel insight into differential Gene expression and clinical significance of dopamine receptors, COMT, and IL6 in BPH and prostate cancer. Curr Mol Med 19:605–619. https://doi.org/10.2174/1566524019666190709180146

    Article  CAS  PubMed  Google Scholar 

  69. Liu L, Wu Y, Wang B, Jiang Y, Lin L, Li X et al (2021) DA-DRD5 signaling controls colitis by regulating colonic M1/M2 macrophage polarization. Cell Death Dis 12:500. https://doi.org/10.1038/s41419-021-03778-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nolan RA, Muir R, Runner K, Haddad EK, Gaskill PJ (2019) Role of macrophage dopamine receptors in mediating cytokine production: implications for neuroinflammation in the context of HIV-associated neurocognitive disorders. J Neuroimmun Pharmacol 14:134–156. https://doi.org/10.1007/s11481-018-9825-2

    Article  CAS  Google Scholar 

  71. Osorio-Barrios F, Prado C, Contreras F, Pacheco R (2018) Dopamine receptor D5 signaling plays a dual role in experimental autoimmune encephalomyelitis potentiating Th17-mediated immunity and favoring suppressive activity of regulatory T-Cells. Front Cell Neurosci 12:192. https://doi.org/10.3389/fncel.2018.00192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Prado C, Gaiazzi M, González H, Ugalde V, Figueroa A, Osorio-Barrios FJ et al (2018) Dopaminergic stimulation of myeloid antigen-presenting cells attenuates signal transducer and activator of transcription 3-activation favouring the development of experimental autoimmune encephalomyelitis. Front Immunol 9:571. https://doi.org/10.3389/fimmu.2018.00571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mollaei M, Abbasi A, Hassan ZM, Pakravan N (2020) The intrinsic and extrinsic elements regulating inflammation. Life Sci 260:118258. https://doi.org/10.1016/j.lfs.2020.118258

    Article  CAS  PubMed  Google Scholar 

  74. Kok P, Roelfsema F, Frölich M, van Pelt J, Stokkel MP, Meinders AE et al (2006) Activation of dopamine D2 receptors simultaneously ameliorates various metabolic features of obese women. Am J Physiol Endocrinol Metabol 291:E1038–E1043

    Article  CAS  Google Scholar 

  75. Kajimoto K, Sato Y, Nakamura T, Yamada Y, Harashima H (2014) Multifunctional envelope-type nano device for controlled intracellular trafficking and selective targeting in vivo. J Control Releas 190:593–606. https://doi.org/10.1016/j.jconrel.2014.03.058

    Article  CAS  Google Scholar 

  76. Yang D, Liu J (2020) Targeting extracellular vesicles-mediated hepatic inflammation as a therapeutic strategy in liver diseases. Liver int 40:2064–2073. https://doi.org/10.1111/liv.14579

    Article  PubMed  Google Scholar 

Download references

Funding

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Ou.

Ethics declarations

Conflict of interest

The authors have no conflict of interest and nothing to disclose.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, P., Ou, Y. Correlation between the dopaminergic system and inflammation disease: a review. Mol Biol Rep 50, 7043–7053 (2023). https://doi.org/10.1007/s11033-023-08610-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08610-2

Keywords

Navigation