Skip to main content
Log in

Non-coding RNA genes modulate PI3K/AKT signaling pathway in polycystic ovary syndrome

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The PI3K protein kinase B (PI3K/AKT) signaling pathway has crucial roles in insulin signaling and other endocrine disorders. The purpose of this study is to validate the association of PCOS with PI3K/AKT pathway target genes, miRNA486-5p, and miRNA483-5p as well as to evaluate the outcome of metformin on the pathogenesis of PCOS. 

Methods

This case-controlled study included 3 subject groups: twenty healthy females (control group), twenty PCOS females before treatment, and twenty PCOS females treated with metformin at a dose (500 mg 3 times per day for 3 months). The following gene expressions were assessed by real-time PCR: PI3K, AKT, ERK, GLUT4, miRNA486-5p, and miRNA483-5p in the whole blood.

Results

There was a significant decrease in miRNA486-5p and miRNA483-5p in the PCOS group with a significant negative correlation between miRNA486-5p and PI3K and a significant negative correlation between miRNA483-5p and ERK. Metformin treatment resulted in significant elevation of the studied miRNA, significant downregulation of PI3K/AKT target genes, and significant amelioration of the gonadotrophic hormonal imbalance and insulin resistance markers: fasting blood glucose, HBA1C, fasting insulin, and GLUT4 gene expression.

Conclusions

miRNA486 and miRNA483 downregulation may contribute to the etiology of PCOS, influence glucose metabolism, and result in IR in PCOS. Metformin’s upregulation of those miRNAs affects glucose metabolism by controlling the expression of GLUT4, ameliorates PCOS-related insulin resistance, and improves PCOS-related hormonal imbalance by controlling the PI3K/AKT signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data used and/or analyzed during this study are available from the corresponding author upon reasonable request.

References

  1. Li Y, Chen C, Ma Y, Xiao J, Luo G, Li Y, Wu D (2019) Multi-system reproductive metabolic disorder: significance for the pathogenesis and therapy of polycystic ovary syndrome (PCOS). Life Sci 228:167–175

    Article  CAS  PubMed  Google Scholar 

  2. Escobar-Morreale HF (2018) Polycystic ovary syndrome: definition, etiology, diagnosis, and treatment. Nat Rev Endocrinol 14(5):270–284

    Article  PubMed  Google Scholar 

  3. Wolf WM, Wattick RA, Kinkade ON, Olfert MD (2018) Geographical prevalence of polycystic ovary syndrome as determined by region and Race/Ethnicity. Int J Environ Res Public Health 15(11):2589

    Article  PubMed  PubMed Central  Google Scholar 

  4. Taits N, Vorobtsova IN, Kurdynko LV (2018) Pathophysiological aspects of the formation of insulin resistance in women with polycystic ovary syndrome. Med Theory Pract 3(2):19–25

    Google Scholar 

  5. Sanchez-Garrido MA, Tena-Sempere M (2020) Metabolic dysfunction in polycystic ovary syndrome: pathogenic role of androgen excess and potential therapeutic strategies. Mol Metab 35:100937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Witchel SF, Oberfield SE, Peña AS (2019) Polycystic ovary syndrome: pathophysiology, presentation, and treatment with emphasis on adolescent girls. J Endocr Soc 3(8):1545–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li T, Mo H, Chen W, Li L, Xiao Y, Zhang J, Li X, Lu Y (2017) Role of the PI3K-Akt signaling pathway in the pathogenesis of polycystic ovary syndrome. Reprodu Sci 24(5):646–655

    Article  CAS  Google Scholar 

  8. Kargutkar N, Hariharan P (2023) Dynamic interplay of microRNA in diseases and therapeutic. Clin Genet 103(3):268–276. https://doi.org/10.1111/cge.14256

    Article  CAS  PubMed  Google Scholar 

  9. Bakr Zaki M, Abulsoud AI, Elsisi AM, Doghish AS, Mansour O, Amin AI, Elrebehy MA, Mohamed MY, Goda MA (2019) Potential role of circulating microRNAs (486-5p, 497, 509-5p and 605) in metabolic syndrome egyptian male patients. Diabetes Metab Syndr Obes Targets Ther 12:601–611

    Article  Google Scholar 

  10. Gallo W, Ottosson F, Kennbäck C, Jujic A, Esguerra J, Eliasson L, Melander O (2021) A replication study reveals miRNA-483-5p as an important target in the prevention of cardiometabolic disease. BMC Cardiovasc Disord 21(1):162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L, Azziz R (2016) Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril 106(1):6–15

    Article  PubMed  Google Scholar 

  12. Glintborg D (2016) Endocrine and metabolic characteristics in polycystic ovary syndrome. Dan Med J 63(4):B5232

    PubMed  Google Scholar 

  13. Rosenfield RL, Ehrmann DA (2016) The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev 37(5):467–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jalilian N, Haghnazari L, Rasolinia S (2016) Leptin and body mass index in polycystic ovary syndrome. Indian J Endocrinol Metabol 20(3):324–328

    Article  CAS  Google Scholar 

  15. Huo Y, Ji S, Yang H, Wu W, Yu L, Ren Y, Wang F (2022) Differential expression of microRNA in the serum of patients with polycystic ovary syndrome with insulin resistance. Ann Translational Med 10(14):762

    Article  CAS  Google Scholar 

  16. Sacks D, Baxter B, Campbell B, Carpenter JS, Cognard C, Dippel D, Eesa M, Fischer U, Hausegger K, Hirsch JA, Hussain S, Jansen M, Jayaraman O, Khalessi MV, Kluck AA, Lavine BW, Meyers S, Ramee PM, Rüfenacht S, Vorwerk DA (2018) Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke Off J Int Stroke Soc 13(6):612–632

    Google Scholar 

  17. Tang L, Yuan L, Yang G, Wang F, Fu M, Chen M, Liu D (2019) Changes in whole metabolites after exenatide treatment in overweight/obese polycystic ovary syndrome patients. Clin Endocrinol 91(4):508–516

    Article  CAS  Google Scholar 

  18. Fraison E, Kostova E, Moran LJ, Bilal S, Ee CC, Venetis C, Costello MF (2020) Metformin versus the combined oral contraceptive pill for hirsutism, acne, and menstrual pattern in polycystic ovary syndrome. Cochrane Database Syst Rev 8(8):CD005552

    PubMed  Google Scholar 

  19. Pradas I, Rovira-Llopis S, Naudí A, Bañuls C, Rocha M, Hernandez-Mijares A, Pamplona R, Victor VM, Jové M (2019) Metformin induces lipid changes in sphingolipid species and oxidized lipids in polycystic ovary syndrome women. Sci Rep 9(1):16033

    Article  PubMed  PubMed Central  Google Scholar 

  20. Guan Y, Wang D, Bu H, Zhao T, Wang H (2020) The effect of metformin on polycystic ovary syndrome in overweight women: a systematic review and meta-analysis of randomized controlled trials. Int J Endocrinol 2020:5150684

    Article  PubMed  PubMed Central  Google Scholar 

  21. Asl ER, Amini M, Najafi S, Mansoori B, Mokhtarzadeh A, Mohammadi A, Baradaran B (2021) Interplay between MAPK/ERK signaling pathway and MicroRNAs: a crucial mechanism regulating cancer cell metabolism and tumor progression. Life Sci 278:119499

    Article  CAS  PubMed  Google Scholar 

  22. Wang W, Ji J, Li J, Ren Q, Gu J, Zhao Y, Hong D, Guo Q, Tan Y (2020) Several critical genes and microRNAs are associated with the development of polycystic ovary syndrome. Ann Endocrinol 81(1):18–27

    Article  Google Scholar 

  23. Cirillo F, Catellani C, Lazzeroni P, Sartori C, Nicoli A, Amarri S, La Sala GB, Street ME (2019) MiRNAs regulating insulin sensitivity are dysregulated in polycystic ovary syndrome (PCOS) ovaries and are associated with markers of inflammation and insulin sensitivity. Front Endocrinol 10:879

    Article  Google Scholar 

  24. Han XM, Tian PY, Zhang JL (2019) MicroRNA-486-5p inhibits ovarian granulosa cell proliferation and participates in the development of PCOS via targeting MST4. Eur Rev Med Pharmacol Sci 23(17):7217–7223

    PubMed  Google Scholar 

  25. Butler AE, Ramachandran V, Sathyapalan T, David R, Gooderham NJ, Benurwar M, Dargham SR, Hayat S, Najafi-Shoushtari H, Atkin SL (2020) microRNA expression in women with and without polycystic ovarian syndrome matched for body mass index. Front Endocrinol 11:206

    Article  Google Scholar 

  26. Zhao H, Zhou D, Chen Y, Liu D, Chu S, Zhang S (2017) Beneficial effects of heqi san on a rat model of polycystic ovary syndrome through the PI3K/AKT pathway. Daru J Pharm Sci 25:1–12

    Article  Google Scholar 

  27. Shi L, Liu S, Zhao W, Shi J (2015) miRNA-483-5p and miRNA-486-5p are down-regulated in cumulus cells of metaphase II oocytes from women with polycystic ovary syndrome. Reprod Biomed Online 31(4):565–572

    Article  CAS  PubMed  Google Scholar 

  28. Xu B, Zhang YW, Tong XH, Liu YS (2015) Characterization of microRNA profile in human cumulus granulosa cells: identification of microRNAs that regulate notch signaling and are associated with PCOS. Mol Cell Endocrinol 404:26–36

    Article  CAS  PubMed  Google Scholar 

  29. Xiang Y, Song Y, Li Y, Zhao D, Ma L, Tan L (2016) miRNA-483 is down-regulated in polycystic ovarian syndrome and inhibits KGN cell proliferation via targeting insulin-like growth factor 1 (IGF1). Med Sci monitor Int Med J Exp Clin Res 22:3383–3393

    CAS  Google Scholar 

  30. Cheng L, Zhang X, Huang YZ, Zhu YL, Xu LY, Li Z, Dai XY, Shi L, Zhou XJ, Wei JF, Ding Q (2021) Metformin exhibits antiproliferation activity in breast cancer via the miRNA-483-3p/METTL3/m6A/p21 pathway. Oncogenesis 10(1):7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fujita K, Iwama H, Oura K, Tadokoro T, Hirose K, Watanabe M, Sakamoto T, Katsura A, Mimura S, Nomura T, Tani J, Miyoshi H, Morishita A, Yoneyama H, Okano K, Suzuki Y, Himoto T, Masaki T (2016) Metformin-suppressed differentiation of human visceral preadipocytes: involvement of microRNAs. Int J Mol Med 38(4):1135–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang D, Wang Y, Zheng Y, Dai F, Liu S, Yuan M, Deng Z, Bao A, Cheng Y (2021) Silencing of lncRNA UCA1 inhibited the pathological progression in PCOS mice through the regulation of the PI3K/AKT signaling pathway. J ovarian Res 14(1):48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tian W, Zhang H, Zhang Y, Wang Y, Zhang Y, Xue F, Song X, Zhang H (2020) High levels of visfatin and the activation of akt and ERK1/2 signaling pathways are associated with endometrium malignant transformation in polycystic ovary syndrome. Gynecol Endocrinol Off J Int Soc Gynecol Endocrinol 36(2):156–161

    Article  CAS  Google Scholar 

  34. Naghiaee Y, Didehdar R, Malekpour-Dehkordi Z, Pourrajab F, Mohiti-Ardakani J (2020) Descending expression of miR320 in insulin-resistant adipocytes treated with ascending concentrations of metformin. Biochem Genet 58(5):661–676

    Article  CAS  PubMed  Google Scholar 

  35. Gong Q, Yin J, Wang M, Zha C, Yu D, Yang S, Du L (2023) Anemoside B4 exerts hypoglycemic effect by regulating the expression of GLUT4 in HFD/STZ rats. Molecules 28(3):968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Morley LC, Tang T, Yasmin E, Norman RJ, Balen AH (2017) Insulin-sensitizing drugs (metformin, rosiglitazone, pioglitazone, D-chiro-inositol) for women with polycystic ovary syndrome, oligo amenorrhoea, and subfertility. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD003053.pub6

    Article  PubMed  PubMed Central  Google Scholar 

  37. Stener-Victorin E, Deng Q (2021) Epigenetic inheritance of polycystic ovary syndrome—challenges and opportunities for treatment. Nat Rev Endocrinol 17(9):521–533

    Article  PubMed  Google Scholar 

  38. Yang Y, Jiang H, Xiao L, Yang X (2018) MicroRNA-33b-5p is overexpressed and inhibits GLUT4 by targeting HMGA2 in polycystic ovarian syndrome: an in vivo and in vitro study. Oncol Rep 39(6):3073–3085

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the patients for their contribution to this study and the authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by the Grant Code: (23UQU4331391DSR002).

Author information

Authors and Affiliations

Authors

Contributions

HSO participated in the debate and wrote the initial manuscript, figure legends, text descriptions of the histology observations, and interpretations. OA performed biochemical and gene investigations, analysis, and interpretation, while MS took part in the manuscript’s writing and data search. MG took part in the biochemical analysis, connected the research data, and produced the paper’s final draft. HF and EM gathered information from the literature and carried out the morphometric analysis, investigation, and result correlation. The final draft of the work was approved by all authors.

Corresponding author

Correspondence to Eman Mohammed Faruk.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest or other disclosures to report.

Ethical approval

The study was designed and conducted according to ethical norms approved by the Local Ethics Committee of Cairo University, Faculty of Medicine, and written informed consent from all females (IRB number (MD-284-2020).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omar, H.S., Ibrahim, O.A., sayed, M.G. et al. Non-coding RNA genes modulate PI3K/AKT signaling pathway in polycystic ovary syndrome. Mol Biol Rep 50, 8361–8372 (2023). https://doi.org/10.1007/s11033-023-08604-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08604-0

Keywords

Navigation