Skip to main content

Advertisement

Log in

Applications and sensory utilizations of magnetic levitation in 3D cell culture for tissue Engineering

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

3D cell culture approaches are cell culture methods that provide good visualization of interactions between cells while preserving the natural growth pattern. In recent years, several studies have managed to implement magnetic levitation technology on 3D cell culture applications by either combining cells with magnetic nanoparticles (positive magnetophoresis) or applying a magnetic field directly to the cells in a high-intensity medium (negative magnetophoresis). The positive magnetophoresis technique consists of integrating magnetic nanoparticles into the cells, while the negative magnetophoresis technique consists of levitating the cells without labelling them with magnetic nanoparticles. Magnetic levitation methods can be used to manipulate 3D culture, provide more complex habitats and custom control, or display density data as a sensor.The present review aims to show the advantages, limitations, and promises of magnetic 3D cell culture, along with its application methods, tools, and capabilities as a density sensor. In this context, the promising magnetic levitation technique on 3D cell cultures could be fully utilized in further studies with precise control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Ravi M, Paramesh V, Kaviya SR, Anuradha E, Paul FD, Solomon (2015) J Cell Physiol 230:16

    CAS  PubMed  Google Scholar 

  2. Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, Chen Z (2017) Physiology 32:266

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Souza GR, Molina JR, Raphael RM, Ozawa MG, Daniel J, Levin CS, Bronk LF, Ananta JS, Mandelin J, Georgescu M, Bankson JA, Gelovani JG, Killian TC, Arap W (2010) HSS Public Access 5:291

    CAS  Google Scholar 

  4. Delikoyun K, Yaman S, Yilmaz E, Sarigil O, Anil-Inevi M, Telli K, Yalcin-Ozuysal O, Ozcivici E, Tekin HC (2021) ACS Sens 6:2191

    CAS  PubMed  Google Scholar 

  5. Caleffi JT, Aal MCE, de Gallindo H, Caxali GH, Crulhas BP, Ribeiro AO, Souza GR, Delella FK (2021) Life Sci 286:1

    Google Scholar 

  6. Jensen C, Teng Y (2020) Front Mol Biosci 7:1

    Google Scholar 

  7. de Antonino D, Soares MM, de Júnior J, de Alvarenga PB, de Mohallem R, Rocha CD, Vieira LA, de Souza AG, Beletti ME, Alves BG, Jacomini JO, Goulart LR, Alves KA (2019) Reprod Biomed Online 38:300

    CAS  PubMed  Google Scholar 

  8. Costa EC, Moreira AF, de Melo-Diogo D, Gaspar VM, Carvalho MP, Correia IJ (2016) Biotechnol Adv 34:1427

    PubMed  Google Scholar 

  9. Marques IA, Fernandes C, Tavares NT, Salom A (2022) Int J Mol Sci 23:1

    Google Scholar 

  10. Nunes AS, Barros AS, Costa EC, Moreira AF, Correia IJ (2019) Biotechnol Bioeng 116:206

    CAS  PubMed  Google Scholar 

  11. Brancato V, Oliveira JM, Correlo VM, Reis RL, Kundu SC (2020) Biomaterials 232:119744

    CAS  PubMed  Google Scholar 

  12. Edmondson R, Broglie JJ, Adcock AF, Yang L (2014) Assay Drug Dev Technol 12:207

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lv D, Hu Z, Lu LIN, Lu H, Xu X (2017) Oncol Lett 14:6999

    PubMed  PubMed Central  Google Scholar 

  14. Riedl A, Schlederer M, Pudelko K, Stadler M, Walter S, Unterleuthner D, Unger C, Kramer N, Hengstschlager M, Kenner L, Pfeiffer D, Krupitza G, Dolznig H (2017) Co Biol 130:203

    CAS  Google Scholar 

  15. Lee KH, Kim TH (2021) Biosensors 11,

  16. Fey SJ, Wrzesinski K (2013) in Valproic Acid Pharmacol Mech Action Clin Implic pp. 141–165

  17. Gupta N, Liu JR, Patel B, Solomon DE, Vaidya B, Gupta V (2016) Bioeng Transl Med 1:63

    PubMed  PubMed Central  Google Scholar 

  18. Ehrmann RL, Gey GO (1956) J Natl Cancer Inst 16:1375

    CAS  PubMed  Google Scholar 

  19. Rheinwatd JG, Green H (1975) Cell 6:331

    Google Scholar 

  20. Lindberg K, Brown ME, Chaves HV, Kenyon KR, Rheinwald JG (1993) Invest Ophthalmol Vis Sci 34:2672

    CAS  PubMed  Google Scholar 

  21. Pellegrini G, Traverso CE, Franzi AT, Mario Z, Cancedda R (1997) and M. De Luca, Lancet 349, 990

  22. Sakalem ME, De Sibio MT, da Costa FA, de Oliveira M (2021) Biotechnol. J. 16,

  23. Langhans SA (2018) Front Pharmacol 9:1

    Google Scholar 

  24. Antoni D, Burckel H, Josset E, Noel G (2015) Int J Mol Sci 16:5517

    CAS  PubMed  PubMed Central  Google Scholar 

  25. van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T (2015) Curr Opin Biotechnol 35:118

    PubMed  Google Scholar 

  26. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Int. J. Polym. Sci. (2011)

  27. Lei KF, Wu MH, Hsu CW, Chen YD (2014) Biosens Bioelectron 51:16

    CAS  PubMed  Google Scholar 

  28. Lang L, Shay C, Zhao X, Xiong Y, Wang X, Teng Y (2019) J Hematol Oncol 12:1

    Google Scholar 

  29. Yin X, Mead BE, Safaee H, Langer R, Karp JM, Levy O (2016) Cell Stem Cell 18:25

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zuppinger C (2019) Front Cardiovasc Med 6:1

    Google Scholar 

  31. Godugu C, Patel AR, Desai U, Andey T, Sams A, Singh M (2013) PLoS ONE 8,

  32. Imamura Y, Mukohara T, Shimono Y, Funakoshi Y, Chayahara N, Toyoda M, Kiyota N, Takao S, Kono S, Nakatsura T, Minami H (2015) Oncol Rep 33:1837

    CAS  PubMed  Google Scholar 

  33. Adine C, Ng KK, Rungarunlert S, Souza GR, Ferreira JN (2018) Biomaterials 180:52

    CAS  PubMed  Google Scholar 

  34. Gaitán-Salvatella I, López-Villegas EO, González-Alva P, Susate-Olmos F, Álvarez-Pérez MA (2021) Front Mol Biosci 8:1

    Google Scholar 

  35. Chan YH, Lee YC, Hung CY, Yang PJ, Lai PC, Feng SW (2021) Stem Cell Rev Reports 17:1810

    CAS  Google Scholar 

  36. Sarigil O, Anil-Inevi M, Yilmaz E, Mese G, Tekin HC, Ozcivici E (2019) Analyst 144:2942

    CAS  PubMed  Google Scholar 

  37. Haisler WL, Timm DM, Gage JA, Tseng H, Killian TC, Souza GR (2013) Nat Protoc 8:1940

    CAS  PubMed  Google Scholar 

  38. Baday M, Ercal O, Sahan AZ, Sahan A, Ercal B, Inan H, Demirci U (2019) Adv Healthc Mater 8:1

    Google Scholar 

  39. Turker E, Yildiz ÜH, Arslan Yildiz A (2019) Int J Biol Macromol 139:1054

    CAS  PubMed  Google Scholar 

  40. Khawar IA, Ghosh T, Park JK, Kuh HJ (2021) J Pharm Investig 51:541

    Google Scholar 

  41. Whatley BR, Li X, Zhang N, Wen X (2014) J Biomed Mater Res - Part A 102:1537

    Google Scholar 

  42. Tseng H, Gage JA, Shen T, Haisler WL, Neeley SK, Shiao S, Chen J, Desai PK, Liao A, Hebel C, Raphael RM, Becker JL, Souza GR (2015) Sci Rep 5:1

    Google Scholar 

  43. Ayvaz I, Sunay D, Sariyar E, Erdal E, Karagonlar ZF (2021) J Gastrointest Cancer 52:1294

    PubMed  Google Scholar 

  44. Penland N, Choi E, Perla M, Park J, Kim DH (2019) Mater Today Proc 27:0

    Google Scholar 

  45. Jaganathan H, Gage J, Leonard F, Srinivasan S, Souza GR, Dave B, Godin B (2014) Sci Rep 4:1

    Google Scholar 

  46. Dabbagh SR, Alseed MM, Saadat M, Sitti M, Tasoglu S (2022) Adv NanoBiomed Res 2:2100103

    CAS  Google Scholar 

  47. Talukdar S, Kundu SC (2012) Adv Funct Mater 22:4778

    CAS  Google Scholar 

  48. Sarigil O, Anil-Inevi M, Firatligil-Yildirir B, Unal YC, Yalcin-Ozuysal O, Mese G, Tekin HC, Ozcivici E (2021) Biotechnol Bioeng 118:1127

    CAS  PubMed  Google Scholar 

  49. Anil-Inevi M, Delikoyun K, Mese G, Tekin HC, Ozcivici E (2021) Biotechnol Bioeng 118:4771

    CAS  PubMed  Google Scholar 

  50. Bonfim L, de Queiroz Souza Passos P, de Oliveira K, Gonçalves LC, Courrol FR, de Oliveira, Silva, Vieira DP (2019) Appl Nanosci 9:1707

    CAS  Google Scholar 

  51. Beola L, Asín L, Fratila RM, Herrero V, De La Fuente JM, Grazú V, Gutiérrez L (2018) ACS Appl Mater Interfaces 10:44301

    CAS  PubMed  Google Scholar 

  52. Labusca L, Herea DD, Minuti AE, Stavila C, Danceanu C, Grigoras M, Ababei G, Chiriac H, Lupu N (2021) J Biomed Mater Res - Part B Appl Biomater 109:630

    CAS  Google Scholar 

  53. Ferreira JN, Hasan R, Urkasemsin G, Ng KK, Adine C, Muthumariappan S, Souza GR (2019) J Tissue Eng Regen Med 13:495

    CAS  PubMed  Google Scholar 

  54. Yilmaz G, Guler E, Geyik C, Demir B, Ozkan M, Odaci Demirkol D, Ozcelik S, Timur S (2018) and C. Remzi Becer, Mol. Syst. Des. Eng. 3, 150

  55. Bumpers HL, Janagama DG, Manne U, Basson MD, Katkoori V (2015) J Surg Res 194:319

    PubMed  Google Scholar 

  56. Jeong YG, Lee JS, Shim JK, Hur W (2016) Cytotechnology 68:2323

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sarabi MR, Yetisen AK, Tasoglu S (2022) Trends Biotechnol 40:915

    CAS  PubMed  Google Scholar 

  58. Bryan AK, Hecht VC, Shen W, Payer K, Grover WH, Manalis SR (2014) Lab Chip 14:569

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Grover WH, Bryan AK, Diez-Silva M, Suresh S, Higgins JM, Manalis SR (2011) Proc. Natl. Acad. Sci. U. S. A. 108, 10992

  60. Ge S, Nemiroski A, Mirica KA, Mace CR, Hennek JW, Kumar AA, Whitesides GM (2020) Angew Chemie - Int Ed 59:17810

    CAS  Google Scholar 

  61. Durmus NG, Tekin HC, Guven S, Sridhar K, Yildiz AA, Calibasi G, Ghiran I, Davis RW, Steinmetz LM, Demirci U (2015) Proc. Natl. Acad. Sci. U. S. A. 112, E3661

  62. Turker E, Demirçak N, Arslan-Yildiz A (2018) Biomater Sci 6:1745

    CAS  PubMed  Google Scholar 

  63. Knowlton S, Yu CH, Jain N, Ghiran IC (2015) PLoS ONE 13:1

    Google Scholar 

  64. Ozefe F, Arslan Yildiz A (2020) Analyst 145:5816

    CAS  PubMed  Google Scholar 

  65. Sobieranski AC, Inci F, Tekin HC, Yuksekkaya M, Comunello E, Cobra D, Von Wangenheim A, Demirci U (2015) Light Sci Appl 4,

  66. Fritzsche M, Mandenius CF (2010) Anal Bioanal Chem 398:181

    CAS  PubMed  Google Scholar 

  67. Feng Q, Liu Y, Huang J, Chen K, Huang J, Xiao K (2018) Sci Rep 8:1

    Google Scholar 

  68. Abakumov MA, Semkina AS, Skorikov AS, Vishnevskiy DA, Ivanova AV, Mironova E, Davydova GA, Majouga AG, Chekhonin VP (2018) J Biochem Mol Toxicol 32:1

    Google Scholar 

  69. Ali EA, Bordacahar B, Mestas JL, Batteux F, Lafon C, Camus M, Prat F (2018) PLoS ONE 13:1

    Google Scholar 

  70. Chung J, Sriram G, Keefer CL (2020) Biotechnol Lett 42:2083

    CAS  PubMed  Google Scholar 

  71. Malhotra N, Lee JS, Liman RAD, Ruallo JMS, Villaflore OB, Ger TR (2020) and C Der Hsiao Molecules 25:1

    Google Scholar 

  72. Meng R, Xu HY, Di SM, Shi DY, Qian AR, Wang JF, Shang P (2011) Acta Biochim Biophys Sin (Shanghai) 43:133

    CAS  PubMed  Google Scholar 

  73. Kotze LA, Beltran CGG, Lang D, Loxton AG, Cooper S, Meiring M, Koegelenberg CFN, Allwood BW, Malherbe ST, Hiemstra AM, Glanzmann B, Kinnear C, Walzl G (2021) and N. du Plessis, MSphere 6, 1

  74. Urbanczyk M, Zbinden A, Layland SL, Duffy G, Schenke-Layland K (2020) Tissue Eng - Part A 26:387

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Perez JE, Nagle I, Wilhelm C (2021) Biofabrication 13,

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. U.T.: Conceptualization, Writing – original draft, B.A.G.: Conceptualization, Writing – original draft; E.I.: Conceptualization, Supervision, Writing ─ review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Esra Imamoglu.

Ethics declarations

Competing Interests

The authors declare no competing financial interest.

Ethics approval

No ethical approval is required.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tepe, U., Aslanbay Guler, B. & Imamoglu, E. Applications and sensory utilizations of magnetic levitation in 3D cell culture for tissue Engineering. Mol Biol Rep 50, 7017–7025 (2023). https://doi.org/10.1007/s11033-023-08585-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08585-0

Keywords

Navigation