Skip to main content
Log in

Development of species-specific ISSR-derived SCAR marker for early discrimination between Cinnamomum verum and Cinnamomum cassia

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Cinnamomum verum (true cinnamon) and Cinnamomum cassia (cassia cinnamon) are two important species belonging to family Lauraceae. These species are recognized by morphological, chemical composition and essential oil contents. The appropriate identification of species would be considerably improved by a genetic method. The main objective of the present study was to develop molecular markers distinguishing between C. verum and C. cassia.

Methods and results

A total 71 ISSR (Inter simple sequence repeat) and four universal barcoding (ITS, rbcL, matK, and psbA-trnH) genes were used to distinguish both the species. No sequence variation was observed between the two species for any DNA barcode gene. However, one ISSR i.e. ISSR-37 showed a clear distinction between the species and produced 570 bp and 746 bp amplicons in C. verum and C. cassia, respectively. The polymorphic bands were converted into species-specific SCAR markers. The SCAR-CV was specific to C. verum and amplified 190 bp band, however there was no amplification seen in the C. cassia samples.

Conclusion

The SCAR marker generated in this study can be employed as efficient, economical, and reliable molecular tool for the identification of C. verum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4 
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data needed to support the conclusions are included in this article. Additional data related to this paper can be requested from the corresponding author.

References

  1. Cardoso-Ugarte GA, López-Malo A, Sosa-Morales ME (2016) Cinnamon (Cinnamomum zeylanicum) essential oils. In: Preedy VR (ed) Essential oils in food preservation, flavor and safety. Academic Press, San Diego, pp 339–347

    Google Scholar 

  2. Killday KB, Davey MH, Glinski JA, Duan P, Veluri R, Proni G, Daugherty FJ, Tempesta MS (2011) Bioactive A-type proanthocyanidins from Cinnamomum cassia. J Nat Prod 74:1833–1841

    CAS  PubMed  Google Scholar 

  3. Lungarini S, Aureli F, Coni E (2008) Coumarin and cinnamaldehyde in cinnamon marketed in Italy a natural chemical hazard? Food Addit Contam 25:1297–1305

    CAS  Google Scholar 

  4. Abeysinghe PD, Wijesinghe KGG, Tachida H, Yoshda T, Thihagoda M (2009) Molecular characterization of Cinnamon (Cinnamomum verum Presl) accessions and evaluation of genetic relatedness of Cinnamon species in Sri Lanka based on trnL intron region, intergenic spacers between trnT-trnL, trnL-trnF, trnH-psbA and nuclear ITS. Res J Agric Biol Sci 5:1079–1088

    CAS  Google Scholar 

  5. Kumar A, Mishra P, Singh SC, Sundaresan V (2014) Efficiency of ISSR and RAPD markers in genetic divergence analysis and conservation management of Justicia adhatoda L, a medicinal plant. Plant Syst Evol 300:1409–1420

    Google Scholar 

  6. Hebert PD, Cywinska A, Ball SL, de Waard JR (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270:313–321

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Techen N, Parveen I, Pan Z, Khan IA (2014) DNA barcoding of medicinal plant material for identification. Curr Opin Biotechnol 25:103–110

    CAS  PubMed  Google Scholar 

  8. Archangi A, Heidari B, Mohammadi-Nejad G (2019) Association between seed yield-related traits and cDNA-AFLP markers in cumin (Cuminum cyminum) under drought and irrigation regimes. Ind Crops Prod 133:276–283

    CAS  Google Scholar 

  9. Bi D, Chen D, Khayatnezhad M, Hashjin ZS, Li Z, Ma Y (2021) Molecular identification and genetic diversity in Hypericum L.: a high value medicinal plant using RAPD markers markers. Genetika 53:393

    Google Scholar 

  10. Hadipour M, Kazemitabar SK, Yaghini H, Dayani S (2020) Genetic diversity and species differentiation of medicinal plant Persian Poppy (Papaver bracteatum L.) using AFLP and ISSR markers. Ecol Genet Genom 16:100058

    Google Scholar 

  11. Ravi S, Hassani M, Heidari B, Deb S, Orsini E, Li J, Richards CM, Panella LW, Srinivasan S, Campagna G, Concheri G (2022) Development of an SNP assay for marker-assisted selection of soil-borne Rhizoctonia solani AG-2-2-IIIB resistance in sugar beet. Biology 11:49

    Google Scholar 

  12. Stevanato P, Broccanello C, Pajola L, Biscarini F, Richards C, Panella LW, Hassani M, Formentin E, Chiodi C, Concheri G, Heidari B (2017) Targeted next-generation sequencing identification of mutations in disease resistance gene analogs (RGAs) in wild and cultivated beets. Genes 8:264

    PubMed  PubMed Central  Google Scholar 

  13. Yang Q, Jiang Y, Wang Y, Han R, Liang Z, He Q, Jia Q (2022) SSR loci analysis in transcriptome and molecular Marker development in Polygonatum sibiricum. BioMed Res Int Article ID 4237913

  14. Nybom H, Weising K, Rotter B (2014) DNA fingerprinting in botany past, present, future. Investig Genet 5:1–18

    PubMed  PubMed Central  Google Scholar 

  15. Tikendra L, Potshangbam AM, Dey A, Devi TR, Sahoo MR, Nongdam P (2021) RAPD, ISSR, and SCoT markers based genetic stability assessment of micropropagated Dendrobium fimbriatum Lindl. Varoculatum Hk f-an important endangered orchid. Physiol Mol Biol Plants 27:341–357

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Nagaraju J, Kathirvel M, Kumar RR, Siddiq EA, Hasnain SE (2002) Genetic analysis of traditional and evolved Basmati and non-Basmati rice varieties by using fluorescence-based ISSR-PCR and SSR markers. Proc Natl Acad Sci 99:5836–5841

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gupta M, Verma B, Kumar N, Chahota RK, Rathour R, Sharma SK, Bhatia S, Sharma TR (2012) Construction of intersubspecific molecular genetic map of lentil based on ISSR, RAPD and SSR markers. J Genet 91:279–287

    CAS  PubMed  Google Scholar 

  18. Bagheri M, Heidari B, Dadkhodaie A, Heidari Z, Daneshnia N, Richards CM (2022) Analysis of genetic diversity in a collection of Plantago species: application of ISSR markers. J Crop SciBiotechnol 25:1–8

    CAS  Google Scholar 

  19. Rameshkumar R, Pandian S, Rathinapriya P, Selvi CT, Satish L, Gowrishankar S, Leung DW, Ramesh M (2019) Genetic diversity and phylogenetic relationship of Nilgirianthus ciliatus populations using ISSR and RAPD markers: Implications for conservation of an endemic and vulnerable medicinal plant. Bio catal Agric Biotechnol 18:101072

    Google Scholar 

  20. Kiran U, Khan S, Mirza KJ, Ram M, Abdin MZ (2010) SCAR markers: a potential tool for authentication of herbal drugs. Fitoterapia 81:969–976

    CAS  PubMed  Google Scholar 

  21. Cheng JL, Yin ZC, Mei ZQ, Wei CL, Chen HC, Wu XS, Fu JJ (2016) Development and significance of SCAR marker QG12–5 for Canarium album (Lour.) Raeusch by molecular cloning from improved RAPD amplification. Genet Mol Res 5gmr.15038347

  22. Cai Y, Gao Y, Zhang Z, Liu H, Wang Y, Ma Y, Li Y, Feng S, Wang H (2022) Development and Application of a Cultivar-Specific Sequence-Characterized Amplified Region (SCAR) Marker for the Detection of Chrysanthemum morifolium Ramat.‘Daboju.’ Plants 2411:604

    Google Scholar 

  23. Ravi D, Siril EA, Nair BR (2021) SCAR marker development for the identification of elite germplasm of Moringa oleifera Lam.-a never die plant. Plant Mol Bio Rep 39:850–861

    CAS  Google Scholar 

  24. Xu YX, Shen SY, Chen W, Chen L (2019) Analysis of Genetic Diversity and development of a SCAR Marker for green tea (Camellia sinensis) cultivars in Zhejiang Province: the most famous green tea-producing area in China. Biochem Genet 57:555–570

    CAS  PubMed  Google Scholar 

  25. Liu X, Cheng J, Mei Z, Wei C, Khan M, Peng J, Fu J (2020) SCAR marker for identification and discrimination of specific medicinal Lycium chinense Miller from Lycium species from ramp-PCR RAPD fragments. 3 Biotech 10:1–7

    Google Scholar 

  26. Boyd M, Panoyan MA, Michael P, Nkongolo KK (2019) Development and characterization of species-diagnostic ISSR and SCAR DNA markers for differentiating red maple (Acer rubrum) and silver maple (A. saccharinum). Genome 62:527–535

    CAS  PubMed  Google Scholar 

  27. Korekar G, Sharma RK, Kumar R, Bisht NC, Srivastava RB, Ahuja PS, Stobdan T (2012) Identification and validation of sex-linked SCAR markers in dioecious Hippophae rhamnoides L. (Elaeagnaceae). Biotechnol Lett 34:973–978

    CAS  PubMed  Google Scholar 

  28. Wang PM, Wu XC, Chi XQ, Li YD, Zheng DQ, Ding R, Min H (2011) Development and application of RAPD-SCAR markers to identify intra-species hybrids of industrial Saccharomyces cerevisiae. World J Micro boil Biotechnol 27:185–188

    Google Scholar 

  29. Srivastava RK, Mishra SK, Singh AK, Mohapatra T (2012) Development of a coupling-phase SCAR marker linked to the powdery mildew resistance gene ‘er1’in pea (Pisum sativum L.). Euphytica 186:855–866

    CAS  Google Scholar 

  30. Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X, Luo K (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 5:e8613

    PubMed  PubMed Central  Google Scholar 

  31. Kress WJ, Erickson DL, Jones FA, Swenson NG, Perez R, Sanjur O, Bermingham E (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proc Natl Acad Sc 106:18621–18626

    CAS  Google Scholar 

  32. Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot 84:1120–1136

    CAS  PubMed  Google Scholar 

  33. Tate JA, Simpson BB (2003) Paraphyly of Tarasa (Malvaceae) and diverse ori-gins of the polyploid species. Syst Bot 28:723–737

    Google Scholar 

  34. Ford CS, Ayres KL, Toomey N, Haider N, Stahl JV, Kelly LJ, Wikstrom N, Hollingsworth PM, Duff RJ, Hoot SB, Cowan RS, Chase MW, Wilkinson MJ (2009) Selection of candidate coding DNA barcoding regions for use on land plants. Bot J Linn Soc 159:1–11

    Google Scholar 

  35. Adhikari S, Saha S, Bandyopadhyay TK, Ghosh P (2014) Identification and validation of a new male sex-specific ISSR marker in pointed gourd (Trichosanthes dioica Roxb.). Sci World J 216896

  36. Verma VK, Behera TK, Munshi AD, Parida SK, Mohapatra T (2007) Genetic diversity of ash gourd (Benincasa hispida (Thunb.) Cogn.) inbred lines based on RAPD and ISSR markers and their hybrid performance. Sci Hortic 113:231–237

    CAS  Google Scholar 

  37. Behera TK, Singh AK, Staub JE (2008) Comparative analysis of genetic diversity in Indian bitter gourd (Momordica charantia L.) using RAPD and ISSR markers for developing crop improvement strategies. Sci Hortic 115:209–217

    CAS  Google Scholar 

  38. Sikdar B, Bhattacharya M, Mukherjee A, Banerjee A, Ghosh E, Ghosh B, Roy SC (2010) Genetic diversity in important members of Cucurbitaceae using isozyme, RAPD and ISSR markers. Biol Plant 54:135–140

    CAS  Google Scholar 

  39. Esmailnia E, Arefrad M, Shabani S, Karimi M, Vafadar F, Dehestani A (2015) Genetic diversity and phylogenetic relationship of Iranian indigenous cucurbits investigated by Inter Simple Sequence Repeat (ISSR) markers. Biharean Biol 9:47–54

    Google Scholar 

  40. Hammer O, Harper DAT, Ryan PD (2001) PAST Paleontological statistics software package for education and data analysis. Paleontol Electron 4:1–9

    Google Scholar 

  41. Mulpuri S, Muddanuru T, Francis G (2013) Start codon targeted (SCoT) polymorphism in toxic and non-toxic accessions of Jatropha curcas L. and development of a codominant SCAR marker. Plant Sci 207:117–127

    CAS  PubMed  Google Scholar 

  42. Li H, Xiao W, Tong T, Li Y, Zhang M, Lin X, Zou X, Wu Q, Guo X (2021) The specific DNA barcodes based on chloroplast genes for species identification of Orchidaceae plants. Sci Rep 11:1–5

    Google Scholar 

  43. Fazekas AJ, Burgess KS, Kesanakurti PR, Graham SW, Newmaster SG, Husband BC, Percy DM, Hajibabaei M, Barrett SC (2008) Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS ONE 3:2802

    Google Scholar 

  44. Chase MW, Cowan RS, Hollingsworth PM, Van Den Berg C, Madriñán S, Petersen G, Seberg O, Jørgsensen T, Cameron KM, Carine M, Pedersen N (2007) A proposal for a standardised protocol to barcode all land plants. Taxon 56:295–299

    Google Scholar 

  45. Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE 2:1–10

    Google Scholar 

  46. Vijayan K, Tsou CH (2010) DNA barcoding in plants: taxonomy in a new perspective. Curr Sci 99:1530–1541

    CAS  Google Scholar 

  47. Travadi T, Shah AP, Pandit R, Sharma S, Joshi C, Joshi M (2023) Detection of Carica papaya adulteration in piper nigrum using chloroplast DNA marker-based PCR assays. Food Anal Methods 16:107–114

    Google Scholar 

  48. Maia VH, Mata CS, Franco LO, Cardoso MA, Cardoso SR, Hemerly AS, Ferreira PC (2012) DNA barcoding Bromeliaceae: achievements and pitfalls. PLoS ONE 7:29877

    Google Scholar 

  49. Stallman JK, Funk VA, Price JP, Knope ML (2019) DNA barcodes fail to accurately differentiate species in Hawaiian plant lineages. Bot J Linn Soc 190:374–388

    Google Scholar 

  50. Astuti G, Petroni G, Adamec L, Miranda VF, Peruzzi L (2020) DNA barcoding approach fails to discriminate Central European bladderworts (Utricularia, Lentibulariaceae), but provides insights concerning their evolution. Plant Biosyst Int J Plant Biol 154:326–336

    Google Scholar 

  51. Li Y, Feng Y, Wang XY, Liu B, Lv GH (2014) Failure of DNA barcoding in discriminating Calligonum species. Nord J Bot 32:511–517

    Google Scholar 

  52. Joshi K, Chavan P, Warude D, Patwardhan B (2004) Molecular markers in herbal drug technology. Curr Sci 87:159–165

    CAS  Google Scholar 

  53. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)- anchored polymerase chain reaction amplification. Genomics 20:176–183

    CAS  PubMed  Google Scholar 

  54. Dar AA, Mahajan R, Sharma S (2019) Molecular markers for characterization and conservation of plant genetic resources. Indian J Agric Sci 89:1755–1763

    CAS  Google Scholar 

  55. Mint Abdelaziz S, Medraoui L, Alami M, Pakhrou O, Makkaoui M, Boukhary OMSA, Filali-Maltouf A (2020) Inter simple sequence repeat markers to assess genetic diversity of the desert date (Balanites aegyptiaca Del.) for Sahelian ecosystem restoration. Sci Rep 10:14948

    PubMed  PubMed Central  Google Scholar 

  56. Raji R, Siril EA (2021) Genetic diversity analysis of promising Ceylon olive (Elaeocarpus serratus L.) genotypes using morphological traits and ISSR markers. Curr Plant Biol 26:100201

    CAS  Google Scholar 

  57. Chavan P, Warude D, Joshi K, Patwardhan B (2008) Development of SCAR(sequence-characterized amplified region) markers as a complementary tool for identification of ginger (Zingiber officinale Roscoe) from crude drugs and multi component formulations. Biotechnol Appl Biochem 50:61–69

    CAS  PubMed  Google Scholar 

  58. Lee JW, Kim YC, Jo IH, Seo A, Lee JH, Kim OT, Hyun DY, Cha SW, Bang KH, Cho JH (2011) Development of an ISSR-derived SCAR marker in Korean ginseng cultivars (Panax ginseng CA Meyer). J Ginseng Res 35:52–59

    CAS  Google Scholar 

  59. Jose S, Mathew M, Anisha CS, Sasidharan S, Rao YS (2022) Development of an ISSR based SCAR marker to identify small cardamom Malabar (prostrate panicle) variety (Elettaria cardamomum (L.) Maton). Sci Hortic 294:110777

    CAS  Google Scholar 

  60. Yue W, Zixia G, Min C, Yanmei Z, Xiaoqin S, Yifeng Z, Peng B (2022) Genetic relationship and species identification of DioscoreapolystachyaTurcz. in Yams determined by ISSR, ISAP, SRAP and SCAR markers. Genet Resour Crop Evol l69:1953–1964

  61. Devaiah KM, Venkatasubramanian P (2008) Development of SCAR marker for authentication of Puerariatuberosa (Roxb. ex. Willd.) DC. CurrSci 25:1306–1309

    Google Scholar 

  62. Seethapathy GS, Balasubramani SP, Venkatasubramanian P (2014) nrDNA ITS sequence based SCAR marker to authenticate Aconitum heterophyllum and Cyperus rotundus in Ayurvedic raw drug source and prepared herbal products. Food Chem 145:1015–1020

    CAS  PubMed  Google Scholar 

  63. Zheng K, Cai Y, Chen W, Gao Y, Jin J, Wang H, Feng S, Lu J (2021) Development, identification, and application of a germplasm specific SCAR Marker for Dendrobium officinale Kimura et Migo. Front Plant Sci 12:669458

    PubMed  PubMed Central  Google Scholar 

  64. Torelli A, Marieschi M, Bruni R (2014) Authentication of saffron (Crocus sativus L) in different processed, retail products by means of SCAR markers. Food Control 36:126–131

    CAS  Google Scholar 

  65. Marieschi M, Torelli A, Beghe D, Bruni R (2016) Authentication of Punica granatum L: development of SCAR markers for the detection of 10 fruits potentially used in economically motivated adulteration. Food Chem 202:438–444

    CAS  PubMed  Google Scholar 

  66. Jiang QT, Liu L, Xiao BY, Li WL, Luo HM, Nie P, Ding Y, Li J, Li WZ (2018) Panax ginseng-specific sequence characterized amplified region (SCAR) marker for testing medicinal products. J Cent South Univ 25:1052–1062

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Council of Scientific and Industrial Research (CSIR) for providing funds (MLP-201, MLP-202), HG thanks CSIR for Junior Research Fellowship. Thanks are also to Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Maharashtra and ICAR-IISR, Kozhikode, Kerala for providing plant material of C. cassia and C. verum, respectively. This manuscript represents CSIR-IHBT communication number 5309.

Funding

This study was funded by the Council of Scientific and Industrial Research (CSIR) for providing funds (MLP-201, MLP-202).

Author information

Authors and Affiliations

Authors

Contributions

HG- data acquisition, wet-lab experiments, analysis, writing; VG- data acquisition, analysis; RC-plant material and sampling; SS-Conceptualization, Plant material and sampling, writing and editing, VJ-Conceptualization, Supervision, Data analysis and result interpretation, writing and editing.

Corresponding author

Correspondence to Vandana Jaiswal.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangwar, H., Gahlaut, V., Chauhan, R. et al. Development of species-specific ISSR-derived SCAR marker for early discrimination between Cinnamomum verum and Cinnamomum cassia. Mol Biol Rep 50, 6311–6321 (2023). https://doi.org/10.1007/s11033-023-08578-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08578-z

Keywords

Navigation