Skip to main content

Advertisement

Log in

Orexin pathway in Parkinson’s disease: a review

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative disease (NDD) caused by dopaminergic neuron degeneration in the substantia nigra (SN). Orexin is a neuropeptide that plays a role in the pathogenesis of PD. Orexin has neuroprotective properties in dopaminergic neurons. In PD neuropathology, there is also degeneration of orexinergic neurons in the hypothalamus, in addition to dopaminergic neurons. However, the loss of orexinergic neurons in PD began after the degeneration of dopaminergic neurons. Reduced activity of orexinergic neurons has been linked to developing and progressing motor and non-motor symptoms in PD. In addition, the dysregulation of the orexin pathway is linked to the development of sleep disorders. The hypothalamic orexin pathway regulates various aspects of PD neuropathology at the cellular, subcellular, and molecular levels. Finally, non-motor symptoms, particularly insomnia and disturbed sleep, promote neuroinflammation and the accumulation of neurotoxic proteins as a result of defects in autophagy, endoplasmic reticulum (ER) stress, and the glymphatic system. As a result, this review aimed to highlight the potential role of orexin in PD neuropathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

All data used in this study are included in this published article.

References

  1. Batiha GES, Al-kuraishy HM, Al-Gareeb AI, Elekhnawy E (2023 Feb) SIRT1 pathway in Parkinson’s disease: a faraway snapshot but so close. Inflammopharmacology 31(1):37–56

  2. Ren J, Chen Y, Fang X, Wang D, Wang Y, Yu L et al (2022 Jun) Correlation of Orexin-A and brain-derived neurotrophic factor levels in metabolic syndrome and cognitive impairment in schizophrenia treated with clozapine. Neurosci Lett 21:782:136695

  3. Simon DK, Tanner CM, Brundin P (2020 Feb) Parkinson Disease Epidemiology, Pathology, Genetics, and pathophysiology. Clin Geriatr Med 36(1):1–12

  4. Tolosa E, Garrido A, Scholz SW, Poewe W (2021 May) Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol 20(5):385–397

  5. Carvey PM, Punati A, Newman MB (2006) Progressive dopamine neuron loss in Parkinson’s disease: the multiple hit hypothesis. Cell Transpl 15(3):239–250

    Article  Google Scholar 

  6. Sauerbier A, Aris A, Lim EW, Bhattacharya K, Ray Chaudhuri K (2018) Impact of ethnicity on the natural history of Parkinson disease. Med J Aust. May 21;208(9):410–4

  7. Rong S, Xu G, Liu B, Sun Y, Snetselaar LG, Wallace RB et al (2021 Nov) Trends in Mortality from Parkinson Disease in the United States, 1999–2019. Neurology 16(20):e1986–e1993

  8. Willis AW, Schootman M, Kung N, Evanoff BA, Perlmutter JS, Racette BA (2012 May) Predictors of survival in patients with Parkinson disease. Arch Neurol 69(5):601–607

  9. Beger AW, Dudzik B, Woltjer RL, Wood PL (2022) Human Brain Lipidomics: Pilot Analysis of the Basal Ganglia Sphingolipidome in Parkinson’s Disease and Lewy Body Disease. Metabolites. Feb 18;12(2):187

  10. Jellinger KA (1996) 2022 Aug;129(8):977–99

  11. Sitek EJ, Sołtan W, Wieczorek D, Schinwelski M, Robowski P, Reilmann R, Guzińska K, Harciarek M, Krysa W, Sławek J (2011 Sep) Self-awareness of motor dysfunction in patients with Huntington’s disease in comparison to Parkinson’s disease and cervical dystonia. J Int Neuropsychol Soc 17(5):788–795

  12. Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG (2019 Jan) Dopamine: functions, signaling, and Association with neurological Diseases. Cell Mol Neurobiol 39(1):31–59

  13. Rudzińska M, Marona M, Bukowczan S, Banaszkiewicz K, Mirek E, Szczudlik A (2007) Falls in different types of Parkinson’s disease. Neurol Neurochir Pol 41(5):395–403

    PubMed  Google Scholar 

  14. Al-Kuraishy HM, Abdulhadi MH, Hussien NR, Al-Niemi MS, Rasheed HA, Al-Gareeb AI (2020) Involvement of orexinergic system in psychiatric and neurodegenerative disorders: a scoping review. Brain Circ 6(2):70–80

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jin J, Chen Q, Qiao Q, Yang L, Xiong J, Xia J, Hu Z, Chen F. Orexin neurons in the lateral hypothalamus project to the medial prefrontal cortex with a rostro-caudal gradient. Neurosci Lett. 2016 May 16;621:9-14.

  16. Sellayah D, Sikder D. Orexin restores aging-related brown adipose tissue dysfunction in male mice. Endocrinology. 2014 Feb;155(2):485–501.

  17. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H et al Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior.Cell. 1998 Feb20;92(4):573–85

  18. de Lecea L, Kilduff TS, Peyron C, Gao XB, Foye PE, Danielson PE et al (1998 Jan) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci 6(1):322–327

  19. Li YD, Luo YJ, Xu W, Ge J, Cherasse Y, Wang YQ et al (2021 Jul) Ventral pallidal GABAergic neurons control wakefulness associated with motivation through the ventral tegmental pathway. Mol Psychiatry 26(7):2912–2928

  20. Goforth PB, Myers MG (2017) Roles for Orexin/Hypocretin in the control of Energy Balance and Metabolism. Curr Top Behav Neurosci 33:137–156

    Article  CAS  PubMed  Google Scholar 

  21. Villano I, La Marra M, Di Maio G, Monda V, Chieffi S, Guatteo E et al Physiological role of Orexinergic System for Health.Int J Environ Res Public Health. 2022 Jul8;19(14):8353

  22. Panhelainen AE, Korpi ER (2012 Mar) Evidence for a role of inhibition of orexinergic neurons in the anxiolytic and sedative effects of diazepam: a c-Fos study. Pharmacol Biochem Behav 101(1):115–124

  23. Al-Kuraishy HM, Al-Gareeb AI (2015 Jan) Advanced Central Effects of Yohimbine on the cognitive function, Psychomotor Performance Task and Working Memory: a Randomized Controlled Clinical Trial Study. J Pharm Res Int 22:328–335

  24. Wang Q, Cao F, Wu Y (2021) Orexinergic System in neurodegenerative Diseases.Front Aging Neurosci. Aug 17;13.

  25. Zaafar D (2023) Toxic Tau Aggregation in AD. In: Mohamed E, editor. Handbook of Neurodegenerative Disorders. Singapore: Springer Nature; Feb 17; p. 1–30

  26. Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GES (2022) Benzodiazepines in Alzheimer’s disease: beneficial or detrimental effects.Inflammopharmacology. Nov 23

  27. Liguori C (2017) Orexin and Alzheimer’s Disease. In: Lawrence AJ, de Lecea L (eds) Behavioral neuroscience of Orexin/Hypocretin. Springer International Publishing, Cham, pp 305–322. (Current Topics in Behavioral Neurosciences).

    Google Scholar 

  28. Fronczek R, van Geest S, Frölich M, Overeem S, Roelandse FWC, Lammers GJ et al (2012 Aug) Hypocretin (orexin) loss in Alzheimer’s disease. Neurobiol Aging 33(8):1642–1650

  29. Liguori C, Mercuri NB, Nuccetelli M, Izzi F, Bernardini S, Placidi F (2018) Cerebrospinal fluid orexin levels and nocturnal sleep disruption in Alzheimer’s Disease Patients showing neuropsychiatric symptoms. J Alzheimers Dis JAD 66(3):993–999

    Article  CAS  PubMed  Google Scholar 

  30. Shimizu S, Takenoshita N, Inagawa Y, Tsugawa A, Hirose D, Kaneko Y et al (2020) Positive association between cognitive function and cerebrospinal fluid orexin A levels in Alzheimer’s Disease. J Alzheimers Dis JAD 73(1):117–123

    Article  CAS  PubMed  Google Scholar 

  31. Slats D, Claassen JAHR, Lammers GJ, Melis RJ, Verbeek MM, Overeem S (2012 Dec) Association between hypocretin-1 and amyloid-β42 cerebrospinal fluid levels in Alzheimer’s disease and healthy controls. Curr Alzheimer Res 9(10):1119–1125

  32. Kang JE, Lim MM, Bateman RJ, Lee JJ, Smyth LP, Cirrito JR et al Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle.Science. 2009 Nov13;326(5955):1005–7

  33. Dauvilliers Y, Hypocretin/Orexin (2021) Sleep and Alzheimer’s Disease. Front Neurol Neurosci 45:139–149

    Article  PubMed  Google Scholar 

  34. Burfeind KG, Yadav V, Marks DL Hypothalamic dysfunction and multiple sclerosis: implications for fatigue and weight dysregulation.Curr Neurol Neurosci Rep. 2016 Sep24;16(11):98

  35. Gencer M, Akbayır E, Şen M, Arsoy E, Yılmaz V, Bulut N et al (2019 May) Serum orexin-A levels are associated with disease progression and motor impairment in multiple sclerosis. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 40(5):1067–1070

  36. Becquet L, Abad C, Leclercq M, Miel C, Jean L, Riou G et al (2019 Mar) Systemic administration of orexin A ameliorates established experimental autoimmune encephalomyelitis by diminishing neuroinflammation. J Neuroinflammation 20(1):64

  37. Cabanas M, Pistono C, Puygrenier L, Rakesh D, Jeantet Y, Garret M et al (2019 Jul) Neurophysiological and behavioral Effects of anti-orexinergic treatments in a mouse model of Huntington’s Disease. Neurother J Am Soc Exp Neurother 16(3):784–796

  38. Liu MF, Xue Y, Liu C, Liu YH, Diao HL, Wang Y et al Orexin-A exerts neuroprotective Effects via OX1R in Parkinson’s Disease.Front Neurosci. 2018 Nov15;12:835

  39. Hadadianpour Z, Fatehi F, Ayoobi F, Kaeidi A, Shamsizadeh A, Fatemi I (2017 Sep) The effect of orexin-A on motor and cognitive functions in a rat model of Parkinson’s disease. Neurol Res 39(9):845–851

  40. Guerreiro S, Florence C, Rousseau E, Hamadat S, Hirsch EC, Michel PP (2015) The sleep-modulating peptide orexin-B protects midbrain dopamine neurons from degeneration, alone or in cooperation with nicotine. Mol Pharmacol 87(3):525–532

    Article  PubMed  Google Scholar 

  41. Micieli G, Tosi P, Marcheselli S, Cavallini A (2003 May) Autonomic dysfunction in Parkinson’s disease. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 24(Suppl 1):S32–34

  42. Fronczek R, Overeem S, Lee SY, Hegeman IM, van Pelt J, van Duinen SG, Lammers GJ, Swaab DF (2007 Jun) Hypocretin (orexin) loss in Parkinson’s disease. Brain 130(Pt 6):1577–1585

  43. Drouot X, Moutereau S, Nguyen JP, Lefaucheur JP, Créange A, Remy P et al (2003 Aug) Low levels of ventricular CSF orexin/hypocretin in advanced PD. Neurology 26(4):540–543

  44. Bachmann CG, Trenkwalder C (2006 Nov) Body weight in patients with Parkinson’s disease. Mov Disord Off J Mov Disord Soc 21(11):1824–1830

  45. Yasui K, Inoue Y, Kanbayashi T, Nomura T, Kusumi M, Nakashima K CSF orexin levels of Parkinson’s disease, dementia with Lewy bodies, progressive supranuclear palsy and corticobasal degeneration.J Neurol Sci. 2006 Dec1; 250(1–2):120–3

  46. Ripley B, Overeem S, Fujiki N, Nevsimalova S, Uchino M, Yesavage J et al CSF hypocretin/orexin levels in narcolepsy and other neurological conditions.Neurology. 2001 Dec26;57(12):2253–8

  47. Gerashchenko D, Murillo-Rodriguez E, Lin L, Xu M, Hallett L, Nishino S et al (2003 Dec) Relationship between CSF hypocretin levels and hypocretin neuronal loss. Exp Neurol 184(2):1010–1016

  48. Fan JK, Wang MC, Yang HM, Zhang JN, Gu L, Zhang H (2023) α-Synuclein Induced the occurrence of RBD via Interaction with OX1R and modulated its degradation.Neuromolecular Med. Jan23

  49. Lajoie AC, Lafontaine AL, Kaminska M (2021 Feb) The Spectrum of Sleep Disorders in Parkinson Disease: a review. Chest 159(2):818–827

  50. Rijsman RM, Schoolderman LF, Rundervoort RS, Louter M (2014 Jan) Restless legs syndrome in Parkinson’s disease. Parkinsonism Relat Disord 20(Suppl 1):S5–9

  51. Van Someren EJW Brain mechanisms of insomnia: new perspectives on causes and consequences.Physiol Rev. 2021Jul; 101(3):995–1046

  52. Davin A, Chabardès S, Devergnas A, Benstaali C, Gutekunst CAN, David O et al Excessive daytime sleepiness in a model of Parkinson’s disease improved by low-frequency stimulation of the pedunculopontine nucleus.NPJ Park Dis. 2023 Jan25;9(1):9

  53. Ling Y, Zhu J, Yan F, Tse LA, Kinra S, Jiang M (2023 Mar) Sleep behaviors and Parkinson’s disease: a bidirectional mendelian randomization analysis. Behav Brain Res 12:441:114281

  54. Bohnen NI, Hu MTM (2019) Sleep disturbance as potential risk and progression factor for Parkinson’s Disease. J Park Dis 9(3):603–614

    Google Scholar 

  55. Postuma RB, Bertrand JA, Montplaisir J, Desjardins C, Vendette M, Rios Romenets S et al (2012 May) Rapid eye movement sleep behavior disorder and risk of dementia in Parkinson’s disease: a prospective study. Mov Disord Off J Mov Disord Soc 27(6):720–726

  56. Barber TR, Muhammed K, Drew D, Lawton M, Crabbe M, Rolinski M et al (2018 Mar) Apathy in rapid eye movement sleep behaviour disorder is common and under-recognized. Eur J Neurol 25(3):469–e32

  57. Zuzuárregui JRP, During EH (2020 Oct) Sleep issues in Parkinson’s Disease and their management. Neurother J Am Soc Exp Neurother 17(4):1480–1494

  58. Mogavero MP, Silvani A, DelRosso LM, Salemi M, Ferri R (2021) Focus on the Complex Interconnection between Cancer, Narcolepsy and Other Neurodegenerative Diseases: A Possible Case of Orexin-Dependent Inverse Comorbidity. Cancers. May 26;13(11):2612

  59. Stanojlovic M, Pallais JP, Kotz CM Inhibition of Orexin/Hypocretin neurons ameliorates elevated physical activity and energy expenditure in the A53T mouse model of Parkinson’s Disease.Int J Mol Sci. 2021 Jan14;22(2):795

  60. Weinhold SL, Seeck-Hirschner M, Nowak A, Hallschmid M, Göder R, Baier PC The effect of intranasal orexin-A (hypocretin-1) on sleep, wakefulness and attention in narcolepsy with cataplexy.Behav Brain Res. 2014 Apr1;262:8–13

  61. Andlauer O, Moore H, Hong SC, Dauvilliers Y, Kanbayashi T, Nishino S et al (2012 Sep) Predictors of Hypocretin (Orexin) Deficiency in Narcolepsy without Cataplexy. Sleep 35(1):1247–1255

  62. Medeiros D, de Lopes Aguiar C, Moraes C, Fisone MFD (2019) G. Sleep Disorders in Rodent Models of Parkinson’s Disease.Front Pharmacol. ; 10

  63. Ogawa T, Kajiyama Y, Ishido H, Chiba S, Revankar GS, Nakano T et al (2022) Decreased cerebrospinal fluid orexin levels not associated with clinical sleep disturbance in Parkinson’s disease: a retrospective study. PLoS ONE 17(12):e0279747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen L, Thakkar MM, Winston S, Bolortuya Y, Basheer R, McCarley RW (2006 Oct) REM sleep changes in rats induced by siRNA-mediated orexin knockdown. Eur J Neurosci 24(7):2039–2048

  65. Evans R, Kimura H, Alexander R, Davies CH, Faessel H, Hartman DS et al (2022 Aug) Orexin 2 receptor-selective agonist danavorexton improves narcolepsy phenotype in a mouse model and in human patients. Proc Natl Acad Sci U S A 30(35):e2207531119

  66. Liu C, Xue Y, Liu MF, Wang Y, Chen L (2020 Sep) Orexin and Parkinson’s disease: a protective neuropeptide with therapeutic potential. Neurochem Int 138:104754

  67. Afdal A, Indra S, Permana H The relationship between plasma hypocretin levels and Sleep Disorders in patients with Parkinson’s Disease.Biosci Med J Biomed Transl Res. 2021 May24;5(9):856–61

  68. Zhan S, Che P, Zhao XK, Li N, Ding Y, Liu J et al (2019 Oct) Molecular mechanism of tumour necrosis factor alpha regulates hypocretin (orexin) expression, sleep and behaviour. J Cell Mol Med 23(10):6822–6834

  69. Stanojlovic M, Pallais Yllescas JP, Vijayakumar A, Kotz C (2019 Dec) Early sociability and social memory impairment in the A53T mouse model of Parkinson’s Disease are ameliorated by Chemogenetic Modulation of Orexin Neuron Activity. Mol Neurobiol 56(12):8435–8450

  70. Mou Z, Yuan YH, Zhang Z, Song LK, Chen NH (2020 May) Endoplasmic reticulum stress, an important factor in the development of Parkinson’s disease. Toxicol Lett 15:324:20–29

  71. Hetz C, Zhang K, Kaufman RJ (2020 Aug) Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol 21(8):421–438

  72. López M, de Lecea L, Diéguez C (2020) Editorial: Hypocretins/Orexins.Front Endocrinol; 11

  73. Wang XT, Yu H, Liu FT, Zhang C, Ma YH, Wang J et al (2022 May) Associations of sleep disorders with cerebrospinal fluid α-synuclein in prodromal and early Parkinson’s disease. J Neurol 269(5):2469–2478

  74. Ozgur R, Uzilday B, Bor M, Turkan I (2020 Oct) The involvement of gamma-aminobutyric acid shunt in the endoplasmic reticulum stress response of Arabidopsis thaliana. J Plant Physiol 253:153250

  75. Priyadarsini N, Nanda P, Devi S, Mohapatra S Sarcopenia: an age-related multifactorial disorder.Curr Aging Sci. 2022 Aug4;15(3):209–17

  76. Bari BA, Chokshi V, Schmidt K Locus coeruleus-norepinephrine: basic functions and insights into Parkinson’s disease.Neural Regen Res. 2019 Dec10;15(6):1006–13

  77. Hipp MS, Kasturi P, Hartl FU (2019 Jul) The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol 20(7):421–435

  78. Adelipour M, Saleth LR, Ghavami S, Alagarsamy KN, Dhingra S, Allameh A (2022) The role of autophagy in the metabolism and differentiation of stem cells. Biochim Biophys Acta Mol Basis Dis. Aug 1;1868(8):166412

  79. Yang Q, Mao Z (2010 Nov) Dysregulation of autophagy and Parkinson’s disease: the MEF2D link. Apoptosis Int J Program Cell Death 15(11):1410–1414

  80. Sahoo S, Padhy AA, Kumari V, Mishra P (2022 Sep) Role of Ubiquitin-Proteasome and Autophagy-Lysosome Pathways in α-Synuclein aggregate clearance. Mol Neurobiol 59(9):5379–5407

  81. Kim HJ, Koh HC (2021 Dec) Chaperon-mediated autophagy can regulate diquat-induced apoptosis by inhibiting α-synuclein accumulation cooperatively with macroautophagy. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 158:112706

  82. Gao J, Perera G, Bhadbhade M, Halliday GM, Dzamko N Autophagy activation promotes clearance of α-synuclein inclusions in fibril-seeded human neural cells.J Biol Chem. 2019 Sep27;294(39):14241–56

  83. Li T, Xu W, Ouyang J, Lu X, Sherchan P, Lenahan C et al Orexin A alleviates neuroinflammation via OXR2/CaMKKβ/AMPK signaling pathway after ICH in mice.J Neuroinflammation. 2020 Jun15;17(1):187

  84. Chauhan AK, Mallick BN (2019 Nov) Association between autophagy and rapid eye movement sleep loss-associated neurodegenerative and patho-physio-behavioral changes. Sleep Med 63:29–37

  85. Cheng Y, Kim WK, Wellman LL, Sanford LD, Guo ML (2021 Oct) Short-term Sleep Fragmentation Dysregulates Autophagy in a Brain Region-Specific Manner. Life Basel Switz 16(10):1098

  86. Zhang Z, Jing Y, Ma Y, Duan D, Li B, Hölscher C et al (2020 May) Driving GABAergic neurons optogenetically improves learning, reduces amyloid load and enhances autophagy in a mouse model of Alzheimer’s disease. Biochem Biophys Res Commun 14(4):928–935

  87. Wang L, Gao Z, Chen G, Geng D, Gao D Low levels of Adenosine and GDNF are potential risk factors for Parkinson’s Disease with Sleep Disorders.Brain Sci. 2023 Jan24;13(2):200

  88. Massey A, Boag MK, Magnier A, Bispo DPCF, Khoo TK, Pountney DL (2022 Jan) Glymphatic System Dysfunction and Sleep Disturbance May contribute to the pathogenesis and progression of Parkinson’s Disease. Int J Mol Sci 23(21):12928

  89. Hablitz LM, Vinitsky HS, Sun Q, Stæger FF, Sigurdsson B, Mortensen KN et al (2019 Feb) Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci Adv 5(2):eaav5447

  90. Lopes DM, Llewellyn SK, Harrison IF (2022) Propagation of tau and α-synuclein in the brain: therapeutic potential of the glymphatic system. Transl Neurodegener. Mar 21;11(1):19

  91. Si X, Guo T, Wang Z, Fang Y, Gu L, Cao L et al Neuroimaging evidence of glymphatic system dysfunction in possible REM sleep behavior disorder and Parkinson’s disease.NPJ Park Dis. 2022 Apr29;8(1):54

  92. Küçükali C, Haytural H, Benbir G, Coban A, Ulusoy C, Giriş M et al Reduced serum orexin-A levels in autoimmune encephalitis and neuromyelitis optica patients.J Neurol Sci. 2014 Nov15;346(1–2):353–5

  93. Picca A, Guerra F, Calvani R, Romano R, Coelho-Júnior HJ, Bucci C et al (2021 Oct) Mitochondrial dysfunction, protein misfolding and neuroinflammation in Parkinson’s Disease: roads to Biomarker Discovery. Biomolecules 13(10):1508

  94. Terrelonge M, Marder KS, Weintraub D, Alcalay RN (2016 Jan) CSF β-Amyloid 1–42 predicts progression to cognitive impairment in newly diagnosed Parkinson Disease. J Mol Neurosci MN 58(1):88–92

  95. Ffytche DH, Pereira JB, Ballard C, Chaudhuri KR, Weintraub D, Aarsland D (2017 Apr) Risk factors for early psychosis in PD: insights from the Parkinson’s progression markers Initiative. J Neurol Neurosurg Psychiatry 88(4):325–331

  96. Zhang X, Gao F, Wang D, Li C, Fu Y, He W et al (2018) Tau Pathology in Parkinson’s Disease.Front Neurol. ; 9

  97. McAllister BB, Lacoursiere SG, Sutherland RJ, Mohajerani MH (2020 May) Intracerebral seeding of amyloid-β and tau pathology in mice: factors underlying prion-like spreading and comparisons with α-synuclein. Neurosci Biobehav Rev 112:1–27

  98. Twohig D, Nielsen HM α-synuclein in the pathophysiology of Alzheimer’s disease.Mol Neurodegener. 2019 Jun11;14(1):23

  99. Holth JK, Fritschi SK, Wang C, Pedersen NP, Cirrito JR, Mahan TE et al The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans.Science. 2019 Feb22;363(6429):880–4

  100. Liu Z, Wang F, Tang M, Zhao Y, Wang X (2019 Jan) Amyloid β and tau are involved in sleep disorder in Alzheimer’s disease by orexin A and adenosine A(1) receptor. Int J Mol Med 43(1):435–442

  101. Matsumoto S, Tsunematsu T Association between Sleep, Alzheimer’s, and Parkinson’s Disease.Biology. 2021 Nov3;10(11):1127

  102. Ylikoski A, Martikainen K, Sarkanen T, Partinen M (2015 Apr) Parkinson’s disease and narcolepsy-like symptoms. Sleep Med 16(4):540–544

  103. Hwang YT, Piguet O, Hodges JR, Grunstein R, Burrell JR (2020 Dec) Sleep and orexin: a new paradigm for understanding behavioural-variant frontotemporal dementia? Sleep Med Rev 54:101361

  104. Palasz E, Wysocka A, Gasiorowska A, Chalimoniuk M, Niewiadomski W, Niewiadomska G BDNF as a Promising Therapeutic Agent in Parkinson’s Disease. Int J Mol Sci. 2020 Feb 10;21(3):1170

  105. Kaplan DR, Miller FD (2000 Jun) Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10(3):381–391

  106. Jiang L, Zhang H, Wang C, Ming F, Shi X, Yang M Serum level of brain-derived neurotrophic factor in Parkinson’s disease: a meta-analysis.Prog Neuropsychopharmacol Biol Psychiatry. 2019 Jan10;88:168–74

  107. Virachit S, Mathews KJ, Cottam V, Werry E, Galli E, Rappou E et al (2019 Nov) Levels of glial cell line-derived neurotrophic factor are decreased, but fibroblast growth factor 2 and cerebral dopamine neurotrophic factor are increased in the hippocampus in Parkinson’s disease. Brain Pathol Zurich Switz 29(6):813–825

  108. Deuschle M, Schredl M, Wisch C, Schilling C, Gilles M, Geisel O et al (2018 Feb) Serum brain-derived neurotrophic factor (BDNF) in sleep-disordered patients: relation to sleep stage N3 and rapid eye movement (REM) sleep across diagnostic entities. J Sleep Res 27(1):73–77

  109. Rauti R, Cellot G, D’Andrea P, Colliva A, Scaini D, Tongiorgi E et al (2020 Mar) BDNF impact on synaptic dynamics: extra or intracellular long-term release differently regulates cultured hippocampal synapses. Mol Brain 17(1):43

  110. Miranda M, Morici JF, Zanoni MB, Bekinschtein P (2019) Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain.Front Cell Neurosci. ; 13

  111. Zhu G, Sun X, Yang Y, Du Y, Lin Y, Xiang J et al (2019 Apr) Reduction of BDNF results in GABAergic neuroplasticity dysfunction and contributes to late-life anxiety disorder. Behav Neurosci 133(2):212–224

Download references

Acknowledgements

The authors would like to thank the Deanship of Scientific Research at Shaqra University for supporting this work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

H.M.A., A.I.A., D.Z., and G.E.B. reviewed the literature and wrote the first draft of the manuscript. M.A., H.M.A., A.I.A., D.Z., and G.E.B. revised and edited the manuscript. A.I.A and D.Z conceptualized and determined the scope of the manuscript and had primary responsibility for the final content. M.A., H.M.A. and G.E.B. supervised the review process. All authors meet ICMJE criteria for authorship and approve the final version for publication.

Corresponding authors

Correspondence to Dalia Zaafar or Gaber El-Saber Batiha.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alrouji, M., Al-Kuraishy, H.M., Al-Gareeb, A.I. et al. Orexin pathway in Parkinson’s disease: a review. Mol Biol Rep 50, 6107–6120 (2023). https://doi.org/10.1007/s11033-023-08459-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08459-5

Keywords

Navigation