Skip to main content

Advertisement

Log in

Expression analysis of IL-2, TBX21 and SOCS1 in peripheral blood cells of celiac disease patients reveals the diagnostic potential of IL-2

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Celiac disease (CD) is a chronic immune-mediated enteropathy and a cytokine network is involved in its pathogenesis. Interleukin-2 (IL-2) has a key role in the adaptive immune pathogenesis of CD and has been reported to be one of the earliest cytokines to be elicited after gluten exposure by CD patients. This study aimed at investigating the expression level of IL-2 and functionally related genes SOCS1 and TBX21 in active and treated CD patients compared to controls.

Methods and results

Peripheral blood (PB) samples were collected from 40 active CD (ACD), 100 treated CD, and 100 healthy subjects. RNA was extracted, cDNA was synthesized and mRNA expression levels of the desired genes were investigated by Real-time PCR. The gene–gene interaction network was also constructed by GeneMANIA. Our results showed a higher PB mRNA expression of IL-2 in ACD patients compared to controls (p = 0.001) and treated CD patients (p˂0.0001). The mRNA expression level of TBX21 was also significantly up-regulated in ACD patients compared to controls (P = 0.03). SOCS1 mRNA level did not differ between active and treated CD patients and controls (p˃0.05) but showed a significant correlation with the patient’s aphthous stomatitis symptom (r = 0.37, p = 0.01). ROC curve analysis suggested that the use of IL-2 levels can reach a high specificity and sensitivity in discriminating active CD patients.

Conclusions

The PB level of IL-2 has the potential to be introduced as a diagnostic biomarker for CD. Larger cohort studies, including pediatric patients, are needed to achieve more insights in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACD:

Active celiac disease

B2M:

Beta-2-microglobulin

CD:

Celiac disease

cDNA:

Complementary DNA

GGI:

Gene-gene interaction

HLA:

Human leukocyte antigens

IFN-γ:

interferon gamma

IL:

Interleukin

JAK:

Janus kinase

NCBI:

National Biotechnology Information Center

ONECUT2:

one cut domain family member 2

PB:

Peripheral blood

RNA:

Ribonucleic acid

ROC:

Receiver operating characteristic

SD:

Standard deviation

SOCS1:

Suppressors of cytokine signaling 1

STAT:

Signal transducer and activator of transcription

TBX21:

T-box transcription factor

TFH:

T follicular helper

Th:

T helper

TNF:

Tumor necrosis factor

References

  1. Caio G, Volta U, Sapone A et al (2019) Celiac disease: a comprehensive current review. BMC Med 17:142. https://doi.org/10.1186/s12916-019-1380-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rostami Nejad M, Rostami K, Emami M, Zali M, Malekzadeh R (2011) Epidemiology of celiac disease in iran: a review. Middle East J Dig Dis 3:5–12

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Singh P, Arora A, Strand TA et al (2018) Global prevalence of Celiac Disease: systematic review and Meta-analysis. Clin Gastroenterol Hepatol 16:823–836e822. https://doi.org/10.1016/j.cgh.2017.06.037

    Article  PubMed  Google Scholar 

  4. Sarno M, Discepolo V, Troncone R, Auricchio R (2015) Risk factors for celiac disease. Ital J Pediatr 41:57. https://doi.org/10.1186/s13052-015-0166-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Siddiqui K, Uqaili AA, Rafiq M, Bhutto MA (2021) Human leukocyte antigen (HLA)-DQ2 and -DQ8 haplotypes in celiac, celiac with type 1 diabetic, and celiac suspected pediatric cases. Medicine 100:e24954. https://doi.org/10.1097/md.0000000000024954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rostami-Nejad M, Romanos J, Rostami K et al (2014) Allele and haplotype frequencies for HLA-DQ in iranian celiac disease patients. World J Gastroenterol 20:6302–6308. https://doi.org/10.3748/wjg.v20.i20.6302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Taraghikhah N, Ashtari S, Asri N et al (2020) An updated overview of spectrum of gluten-related disorders: clinical and diagnostic aspects. BMC Gastroenterol 20:258. https://doi.org/10.1186/s12876-020-01390-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Asri N, Rostami-Nejad M, Rezaei-Tavirani M, Razzaghi M, Asadzadeh-Aghdaei H, Zali MR (2020) Novel therapeutic strategies for Celiac Disease. Middle East J Dig Dis 12:229–237. https://doi.org/10.34172/mejdd.2020.187

    Article  PubMed  PubMed Central  Google Scholar 

  9. Garrote JA, Gómez-González E, Bernardo D, Arranz E, Chirdo F (2008) Celiac disease pathogenesis: the proinflammatory cytokine network. J Pediatr Gastroenterol Nutr 47(Suppl 1):S27–32. https://doi.org/10.1097/MPG.0b013e3181818fb9

    Article  CAS  PubMed  Google Scholar 

  10. Gaffen SL, Liu KD (2004) Overview of interleukin-2 function, production and clinical applications. Cytokine 28:109–123. https://doi.org/10.1016/j.cyto.2004.06.010

    Article  CAS  PubMed  Google Scholar 

  11. Tye-Din JA, Daveson AJM, Ee HC et al (2019) Elevated serum interleukin-2 after gluten correlates with symptoms and is a potential diagnostic biomarker for coeliac disease. Aliment Pharmacol Ther 50:901–910. https://doi.org/10.1111/apt.15477

    Article  CAS  PubMed  Google Scholar 

  12. Malamut G, Cording S, Cerf-Bensussan N (2019) Recent advances in celiac disease and refractory celiac disease. https://doi.org/10.12688/f1000research.18701.1. F1000Research 8

  13. Penedo-Pita M, Peteiro-Cartelle J (1991) Increased serum levels of interleukin-2 and soluble interleukin-2 receptor in celiac disease. J Pediatr Gastroenterol Nutr 12:56–60. https://doi.org/10.1097/00005176-199101000-00012

    Article  CAS  PubMed  Google Scholar 

  14. Hwang ES, Hong JH, Glimcher LH (2005) IL-2 production in developing Th1 cells is regulated by heterodimerization of RelA and T-bet and requires T-bet serine residue 508. J Exp Med 202:1289–1300. https://doi.org/10.1084/jem.20051044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Workman AM, Jacobs AK, Vogel AJ, Condon S, Brown DM (2014) Inflammation enhances IL-2 Driven differentiation of Cytolytic CD4 T cells. PLoS ONE 9:e89010. https://doi.org/10.1371/journal.pone.0089010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ross SH, Cantrell DA (2018) Signaling and function of Interleukin-2 in T lymphocytes. Annu Rev Immunol 36:411–433. https://doi.org/10.1146/annurev-immunol-042617-053352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lazarevic V, Glimcher LH, Lord GM (2013) T-bet:a bridge between innate and adaptive immunity. Nat Rev Immunol 13:777–789. https://doi.org/10.1038/nri3536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liau NPD, Laktyushin A, Lucet IS et al (2018) The molecular basis of JAK/STAT inhibition by SOCS1. Nat Commun 9:1558. https://doi.org/10.1038/s41467-018-04013-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sporri B, Kovanen PE, Sasaki A, Yoshimura A, Leonard WJ (2001) JAB/SOCS1/SSI-1 is an interleukin-2–induced inhibitor of IL-2 signaling. Blood 97:221–226. https://doi.org/10.1182/blood.V97.1.221

    Article  CAS  PubMed  Google Scholar 

  20. Yu X, Vargas J, Green PHR, Bhagat G (2021) Innate lymphoid cells and Celiac Disease: current perspective. Cell Mol Gastroenterol Hepatol 11:803–814. https://doi.org/10.1016/j.jcmgh.2020.12.002

    Article  CAS  PubMed  Google Scholar 

  21. Li P, Spolski R, Liao W, Leonard WJ (2014) Complex interactions of transcription factors in mediating cytokine biology in T cells. Immunol Rev 261:141–156. https://doi.org/10.1111/imr.12199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. del Sutra A, Menegatti S, Fuentealba J et al (2021) In vivo genome-wide CRISPR screens identify SOCS1 as a major intrinsic checkpoint of CD4 + Th1 cell response. Sci Immunol 6:eabe8219. https://doi.org/10.1126/sciimmunol.abe8219

    Article  CAS  Google Scholar 

  23. Lahat N, Shapiro S, Karban A, Gerstein R, Kinarty A, Lerner A (1999) Cytokine profile in coeliac disease. Scand J Immunol 49:441–446. https://doi.org/10.1046/j.1365-3083.1999.00523.x

    Article  CAS  PubMed  Google Scholar 

  24. Manavalan JS, Hernandez L, Shah JG et al (2010) Serum cytokine elevations in celiac disease: association with disease presentation. Hum Immunol 71:50–57. https://doi.org/10.1016/j.humimm.2009.09.351

    Article  CAS  PubMed  Google Scholar 

  25. Frisullo G, Nociti V, Iorio R et al (2009) T-bet and pSTAT-1 expression in PBMC from coeliac disease patients: new markers of disease activity. Clin Exp Immunol 158:106–114. https://doi.org/10.1111/j.1365-2249.2009.03999.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Monteleone I, Monteleone G, Del Vecchio Blanco G et al (2004) Regulation of the T helper cell type 1 transcription factor T-bet in coeliac disease mucosa. Gut 53:1090–1095. https://doi.org/10.1136/gut.2003.030551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lahdenperä A, Ludvigsson J, Fälth-Magnusson K, Högberg L, Vaarala O (2011) The effect of gluten-free diet on Th1-Th2-Th3-associated intestinal immune responses in celiac disease. Scand J Gastroenterol 46:538–549. https://doi.org/10.3109/00365521.2011.551888

    Article  CAS  PubMed  Google Scholar 

  28. Mazzarella G, MacDonald TT, Salvati VM et al (20030 constitutive activation of the signal transducer and activator of transcription pathway in celiac disease lesions.Am J Pathol162:1845–1855. https://doi.org/10.1016/s0002-9440(10)64319-2

  29. Plaza-Izurieta L, Fernandez-Jimenez N, Irastorza I et al (2015) Expression analysis in intestinal mucosa reveals complex relations among genes under the association peaks in celiac disease. Eur J Hum Genet 23:1100–1105. https://doi.org/10.1038/ejhg.2014.244

    Article  CAS  PubMed  Google Scholar 

  30. Aydemir S, Tekin NS, Aktunç E, Numanoğlu G, Ustündağ Y (2004) Celiac disease in patients having recurrent aphthous stomatitis. Turk J Gastroenterol 15:192–195

    PubMed  Google Scholar 

  31. Hasan A, Patel H, Saleh H, Youngberg G, Litchfield J, Krishnaswamy G (2013) Remission of severe aphthous stomatitis of celiac disease with etanercept. Clin Mol Allergy 11:6. https://doi.org/10.1186/1476-7961-11-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. van Heel DA, Franke L, Hunt KA, et Al (2007) A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nat Genet 39:827–829. https://doi.org/10.1038/ng2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Burchill MA, Yang J, Vang KB, Farrar MA (2007) Interleukin-2 receptor signaling in regulatory T cell development and homeostasis. Immunol Lett 114:1–8. https://doi.org/10.1016/j.imlet.2007.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dunne MR, Byrne G, Chirdo FG, Feighery C (2020) Coeliac Disease Pathogenesis: the uncertainties of a well-known Immune mediated disorder. https://doi.org/10.3389/fimmu.2020.01374. Front Immunol 11

  35. Banaganapalli B, Mansour H, Mohammed A et al (2020) Exploring celiac disease candidate pathways by global gene expression profiling and gene network cluster analysis. Sci Rep 10:16290. https://doi.org/10.1038/s41598-020-73288-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Powell MD, Read KA, Sreekumar BK, Jones DM, Oestreich KJ (2019) IL-12 signaling drives the differentiation and function of a TH1-derived TFH1-like cell population. Sci Rep 9:13991. https://doi.org/10.1038/s41598-019-50614-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang Y, Lv X, Zhan L et al (2021) Case Report: IL-21 and Bcl-6 regulate the proliferation and secretion of tfh and tfr cells in the intestinal Germinal Center of patients with inflammatory bowel disease. https://doi.org/10.3389/fphar.2020.587445. Front Pharmacol 11

  38. Iervasi E, Auricchio R, Strangio A, Greco L, Saverino D (2020) Serum IL-21 levels from celiac disease patients correlates with anti-tTG IgA autoantibodies and mucosal damage. Autoimmunity 53:225–230. https://doi.org/10.1080/08916934.2020.1736047

    Article  CAS  PubMed  Google Scholar 

  39. Long D, Chen Y, Wu H, Zhao M, Lu Q (2019) Clinical significance and immunobiology of IL-21 in autoimmunity. J Autoimmun 99:1–14. https://doi.org/10.1016/j.jaut.2019.01.013

    Article  CAS  PubMed  Google Scholar 

  40. Usui T, Preiss JC, Kanno Y et al (2006) T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription. J Exp Med 203:755–766. https://doi.org/10.1084/jem.20052165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yagi R, Zhu J, Paul WE (2011) An updated view on transcription factor GATA3-mediated regulation of Th1 and Th2 cell differentiation. Int Immunol 23:415–420. https://doi.org/10.1093/intimm/dxr029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hertweck A, Vila de Mucha M, Barber PR et al (2022) The TH1 cell lineage-determining transcription factor T-bet suppresses TH2 gene expression by redistributing GATA3 away from TH2 genes. Nucleic Acids Res 50:4557–4573. https://doi.org/10.1093/nar/gkac258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yu J, Li D, Jiang H (2020) Emerging role of ONECUT2 in tumors (review). Oncol Lett 20:328. https://doi.org/10.3892/ol.2020.12192

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dusing MR, Maier EA, Aronow BJ, Wiginton DA (2010) Onecut-2 knockout mice fail to thrive during early postnatal period and have altered patterns of gene expression in small intestine. Physiol Genomics 42:115–125. https://doi.org/10.1152/physiolgenomics.00017.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Gastroenterology and Liver Diseases Research Center of Shahid Beheshti University of Medical Sciences for their support.

Funding

Research reported in this publication was supported by Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

Design of experiments by MRN. Analysis of data by NA and FG. First draft of manuscript by FG and EA and subsequent drafting by MRN, MH, AM, NA and HAA. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohammad Rostami-Nejad.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

The research was authorized by the Ethics Committee of the Research Institute of Gastroenterology and Liver Diseases of Shahid Beheshti University of Medical Sciences (Ethics code: IR.SBMU.RIGLD.REC.1399.035). Written informed consent was also obtained from participants.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganjali, F., Asri, N., Rostami-Nejad, M. et al. Expression analysis of IL-2, TBX21 and SOCS1 in peripheral blood cells of celiac disease patients reveals the diagnostic potential of IL-2. Mol Biol Rep 50, 4841–4849 (2023). https://doi.org/10.1007/s11033-023-08394-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08394-5

Keywords

Navigation