Skip to main content
Log in

Selection of reference genes for RT-qPCR analysis in developing chicken embryonic ovary

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

A Correction to this article was published on 30 October 2023

This article has been updated

Abstract

Background

Normalization of the expression profiling of target genes, in a tissue-specific manner and under different experimental conditions, requires stably expressed gene(s) to be used as internal reference(s). However, to study the molecular regulation of oocyte meiosis initiation during ovary development in chicken embryos, stable reference gene(s) still need to be compared and confirmed.

Methods and results

Six candidate genes previously used as internal references for the chicken embryo (Actb, Cvh, Dazl, Eef1a, Gapdh and Rpl15) were chosen, and their expression profiles in left ovaries dissected at five chicken embryonic days (E12.5, E15.5, E17.5, E18.5 and E20.5) were evaluated, respectively. Separately, GeNorm, NormFinder, BestKeeper and Comparative ΔCt methods were used to assess the stability of candidate reference genes, and all results were combined to give the final rank by RefFinder. All methods identified that Eef1a and Rpl15 were the two most stable internal reference genes, whereas Cvh is the most unstable one. Moreover, expression levels of three marker genes for chicken oocyte meiosis entry (Stra8, Scp3 and Dmc1) were normalized, based on Eef1a, Rpl15, or their combinations, respectively.

Conclusion

Our findings provide the most suitable internal reference genes (Eef1a and Rpl15), to investigate further molecular regulation of ovary development and oocyte meiosis initiation in chicken embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Huang X, Meng L, Wang S, Man Q, Jiang Y, Zhu G (2022) Transcriptional dynamics of the circulating chicken primordial germ cells revealing key genes in cell adhesion and proliferation prior to gonad colonization. Mol Reprod Dev 89(4):214–226. https://doi.org/10.1002/mrd.23558

    Article  CAS  PubMed  Google Scholar 

  2. Tagami T, Miyahara D, Nakamura Y (2017) Avian primordial germ cells. Adv Exp Med Biol 1001:1–18. https://doi.org/10.1007/978-981-10-3975-1_1

    Article  CAS  PubMed  Google Scholar 

  3. Zhou S, Li T, Zhang M, Chen C, Gao X, Zhang C, Hu C, Zuo Q, Chen G, Li B (2021) Epigenetic modification cooperates with Zeb1 transcription factor to regulate Bmp4 to promote chicken PGCs formation. Gene 794:145760. https://doi.org/10.1016/j.gene.2021.145760

    Article  CAS  PubMed  Google Scholar 

  4. Hoshino A, Koide M, Ono T, Yasugi S (2005) Sex-specific and left-right asymmetric expression pattern of Bmp7 in the gonad of normal and sex-reversed chicken embryos. Dev Growth Differ 47(2):65–74. https://doi.org/10.1111/j.1440-169x.2004.00783.x

    Article  CAS  PubMed  Google Scholar 

  5. Guioli S, Zhao D, Nandi S, Clinton M, Lovell-Badge R (2020) Oestrogen in the chick embryo can induce chromosomally male ZZ left gonad epithelial cells to form an ovarian cortex that can support oogenesis. Development 147(4):dev181693. https://doi.org/10.1242/dev.181693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nakabayashi O, Kikuchi H, Kikuchi T, Mizuno S (1998) Differential expression of genes for aromatase and estrogen receptor during the gonadal development in chicken embryos. J Mol Endocrinol 20(2):193–202. https://doi.org/10.1677/jme.0.0200193

    Article  CAS  PubMed  Google Scholar 

  7. Kim YM, Han JY (2018) The early development of germ cells in chicken. Int J Dev Biol 62(1–2–3):145–152. https://doi.org/10.1387/ijdb.170283jh

    Article  CAS  PubMed  Google Scholar 

  8. Hochwagen A (2008) Meiosis. Curr Biol 18(15):R641–R645. https://doi.org/10.1016/j.cub.2008.06.013

    Article  CAS  PubMed  Google Scholar 

  9. Smith CA, Roeszler KN, Bowles J, Koopman P, Sinclair AH (2008) Onset of meiosis in the chicken embryo; evidence of a role for retinoic acid. BMC Dev Biol 8:85. https://doi.org/10.1186/1471-213X-8-85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu M, Xu Y, Yu D, Yu D, Du W (2015) Comparative analysis of temporal gene expression patterns in the developing ovary of the embryonic chicken. J Reprod Dev 61(2):123–133. https://doi.org/10.1262/jrd.2014-084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR–a perspective. J Mol Endocrinol 34(3):597–601. https://doi.org/10.1677/jme.1.01755

    Article  CAS  PubMed  Google Scholar 

  12. Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6(4):279–284. https://doi.org/10.1038/sj.gene.6364190

    Article  CAS  PubMed  Google Scholar 

  13. Fleige S, Pfaffl MW (2006) RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med 27(2–3):126–139. https://doi.org/10.1016/j.mam.2005.12.003

    Article  CAS  PubMed  Google Scholar 

  14. Wang YK, Li X, Song ZQ, Yang CX (2017) Methods of RNA preparation affect mRNA abundance quantification of reference genes in pig maturing oocytes. Reprod Domest Anim 52(5):722–730. https://doi.org/10.1111/rda.12972

    Article  CAS  PubMed  Google Scholar 

  15. Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E (1999) Housekeeping genes as internal standards: use and limits. J Biotechnol 75(2–3):291–295. https://doi.org/10.1016/s0168-1656(99)00163-7

    Article  CAS  PubMed  Google Scholar 

  16. Cedraz de Oliveira H, Pinto Garcia Junior AA, Gonzaga Gromboni JG, Vasconcelos Farias Filho R, Souza do Nascimento C, Arias Wenceslau A (2017) Influence of heat stress, sex and genetic groups on reference genes stability in muscle tissue of chicken. PLoS ONE 12(5):e0176402. https://doi.org/10.1371/journal.pone.0176402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang Y, Zhao Y, Li J, Liu H, Ernst CW, Liu X, Liu G, Xi Y, Lei M (2015) Evaluation of housekeeping genes for normalizing real-time quantitative PCR assays in pig skeletal muscle at multiple developmental stages. Gene 565(2):235–241. https://doi.org/10.1016/j.gene.2015.04.016

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Wu ZW, Fang T, Zhang YQ, Chen L, Du ZQ, Yang CX (2022) Identification of internal reference genes for porcine immature sertoli cells under heat stress. Reprod Domest Anim 57(11):1344–1352. https://doi.org/10.1111/rda.14211

    Article  CAS  PubMed  Google Scholar 

  19. Bednarz-Misa I, Neubauer K, Zacharska E, Kapturkiewicz B, Krzystek-Korpacka M (2020) Whole blood ACTB, B2M and GAPDH expression reflects activity of inflammatory bowel disease, advancement of colorectal cancer, and correlates with circulating inflammatory and angiogenic factors: relevance for real-time quantitative PCR. Adv Clin Exp Med 29(5):547–556. https://doi.org/10.17219/acem/118845

    Article  PubMed  Google Scholar 

  20. Hosni ND, Anauate AC, Boim MA (2021) Reference genes for mesangial cell and podocyte qPCR gene expression studies under high-glucose and renin-angiotensin-system blocker conditions. PLoS ONE 16(7):e0246227. https://doi.org/10.1371/journal.pone.0246227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034. https://doi.org/10.1186/gb-2002-3-7-research0034

    Article  PubMed  PubMed Central  Google Scholar 

  22. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250. https://doi.org/10.1158/0008-5472.CAN-04-0496

    Article  CAS  PubMed  Google Scholar 

  23. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26(6):509–515. https://doi.org/10.1023/b:bile.0000019559.84305.47

    Article  CAS  PubMed  Google Scholar 

  24. Silver N, Best S, Jiang J, Thein SL (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7:33. https://doi.org/10.1186/1471-2199-7-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xie F, Xiao P, Chen D, Xu L, Zhang B (2012). miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol. 80:75. https://doi.org/10.1007/s11103-012-9885-2

  26. Carré GA, Couty I, Hennequet-Antier C, Govoroun MS (2011) Gene expression profiling reveals new potential players of gonad differentiation in the chicken embryo. PLoS ONE 6(9):e23959. https://doi.org/10.1371/journal.pone.0023959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Feng Y, Peng X, Li S, Gong Y (2009) Isolation and characterization of sexual dimorphism genes expressed in chicken embryonic gonads. Acta Biochim Biophys Sin (Shanghai) 41(4):285–294. https://doi.org/10.1093/abbs/gmp012

    Article  CAS  PubMed  Google Scholar 

  28. Guo C, Zhang G, Lin X, Zhao D, Zhang C, Mi Y (2019) Reciprocal stimulating effects of bFGF and FSH on chicken primordial follicle activation through AKT and ERK pathway. Theriogenology 132:27–35. https://doi.org/10.1016/j.theriogenology.2019.04.005

    Article  CAS  PubMed  Google Scholar 

  29. He B, Lin J, Li J, Mi Y, Zeng W, Zhang C (2012) Basic fibroblast growth factor suppresses meiosis and promotes mitosis of ovarian germ cells in embryonic chickens. Gen Comp Endocrinol 176(2):173–181. https://doi.org/10.1016/j.ygcen.2012.01.012

    Article  CAS  PubMed  Google Scholar 

  30. Hou F, Xiao M, Li J, Cook DW, Zeng W, Zhang C, Mi Y (2016) Ameliorative effect of grape seed Proanthocyanidin Extract on Cadmium-Induced Meiosis Inhibition during Oogenesis in Chicken embryos. Anat Rec (Hoboken) 299(4):450–460. https://doi.org/10.1002/ar.23320

    Article  CAS  PubMed  Google Scholar 

  31. Ciesielska A, Stączek P (2021) Selection and validation of reference genes for qPCR in the human dermatophyte Trichophyton rubrum exposed to different carbon sources which promote adhesion-inducing conditions. Mycoses 64(3):300–308. https://doi.org/10.1111/myc.13215

    Article  CAS  PubMed  Google Scholar 

  32. Dunislawska A, Slawinska A, Siwek M (2020) Validation of the reference genes for the gene expression studies in chicken DT40 cell line. Genes (Basel) 11(4):372. https://doi.org/10.3390/genes11040372

    Article  CAS  PubMed  Google Scholar 

  33. Kanakachari M, Solanke AU, Prabhakaran N, Ahmad I, Dhandapani G, Jayabalan N, Kumar PA (2016) Evaluation of suitable reference genes for normalization of qPCR gene expression studies in brinjal (Solanum melongena L.) during fruit developmental stages. Appl Biochem Biotechnol 178(3):433–450. https://doi.org/10.1007/s12010-015-1884-8

    Article  CAS  PubMed  Google Scholar 

  34. Karuppaiya P, Yan XX, Liao W, Wu J, Chen F, Tang L (2017) Identification and validation of superior reference gene for gene expression normalization via RT-qPCR in staminate and pistillate flowers of Jatropha curcas - A biodiesel plant. PLoS ONE 12(2):e0172460. https://doi.org/10.1371/journal.pone.0172460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gao XK, Zhang S, Luo JY, Wang CY, Lü LM, Zhang LJ, Zhu XZ, Wang L, Lu H, Cui JJ (2017) Comprehensive evaluation of candidate reference genes for gene expression studies in Lysiphlebia japonica (Hymenoptera: Aphidiidae) using RT-qPCR. Gene 637:211–218. https://doi.org/10.1016/j.gene.2017.09.057

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J, Xie W, Yu X, Zhang Z, Zhao Y, Wang N, Wang Y (2019) Selection of suitable reference genes for RT-qPCR gene expression analysis in siberian wild rye (Elymus sibiricus) under different experimental conditions. Genes (Basel) 10(6):451. https://doi.org/10.3390/genes10060451

    Article  CAS  PubMed  Google Scholar 

  37. Liu Y, Wu S, Jiang N, Liu W, Zhou Y, Zeng L, Zhong Q, Li Z, Fan Y (2022) Characterization of reference genes for qRT-PCR normalization in rice-field eel (Monopterus albus) to assess differences in embryonic developmental stages, the early development of immune organs, and cells infected with rhabdovirus. Fish Shellfish Immunol 120:92–101. https://doi.org/10.1016/j.fsi.2021.11.021

    Article  CAS  PubMed  Google Scholar 

  38. Franko N, Vrščaj LA, Zore T, Ostanek B, Marc J, Lojk J (2022) TBP, PPIA, YWHAZ and EF1A1 are the most stably expressed genes during osteogenic differentiation. Int J Mol Sci 23(8):4257. https://doi.org/10.3390/ijms23084257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li T, Yuan W, Qiu S, Shi J (2021) Selection of reference genes for gene expression analysis in Liriodendron hybrids’ somatic embryogenesis and germinative tissues. Sci Rep 11(1):4957. https://doi.org/10.1038/s41598-021-84518-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang S, Wang B, He H, Sun A, Guo C (2018) A new set of reference housekeeping genes for the normalization RT-qPCR data from the intestine of piglets during weaning. PLoS ONE 13(9):e0204583. https://doi.org/10.1371/journal.pone.0204583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  42. Caracausi M, Piovesan A, Antonaros F, Strippoli P, Vitale L, Pelleri MC (2017) Systematic identification of human housekeeping genes possibly useful as references in gene expression studies. Mol Med Rep 16(3):2397–2410. https://doi.org/10.3892/mmr.2017.6944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thellin O, ElMoualij B, Heinen E, Zorzi W (2009) A decade of improvements in quantification of gene expression and internal standard selection. Biotechnol Adv 27(4):323–333. https://doi.org/10.1016/j.biotechadv.2009.01.010

    Article  CAS  PubMed  Google Scholar 

  44. Ayers KL, Sinclair AH, Smith CA (2013) The molecular genetics of ovarian differentiation in the avian model. Sex Dev 7(1–3):80–94. https://doi.org/10.1159/000342358

    Article  CAS  PubMed  Google Scholar 

  45. Samak DH, El-Sayed YS, Shaheen HM, El-Far AH, Abd El-Hack ME, Noreldin AE, El-Naggar K, Abdelnour SA, Saied EM, El-Seedi HR, Aleya L, Abdel-Daim MM (2020) Developmental toxicity of carbon nanoparticles during embryogenesis in chicken. Environ Sci Pollut Res Int 27(16):19058–19072. https://doi.org/10.1007/s11356-018-3675-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors appreciate the help from other colleagues in Dr. Yang’s and Dr. Du’s groups.

Funding

Author Cai-Xia Yang and Zhi-Qiang Du have received Startup Grants from Yangtze University, China.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Yi Wang and Yu-Qing Zhang. Zi-Wei Wu, Ting Fang, Fang Wang and Han Zhao provided the helps for sample collection and figure organization. The first draft of the manuscript was written by Cai-Xia Yang and Zhi-Qiang Du edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhi-Qiang Du or Cai-Xia Yang.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

All experimental materials and procedures were reviewed and approved by the Animal Care Commission and Ethics Committee of the Yangtze University (YZU-2018-0031), Hubei, China.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The 25th reference “Ren J, Zhang N, Li X, Sun X, Song J (2021) Identification of reference genes for gene expression studies among different developmental stages of murine hearts. BMC Dev Biol 21(1):13. https://doi.org/10.1186/s12861-021-00244-6” is replaced with “Xie F, Xiao P, Chen D, Xu L, Zhang B. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol. 2012;80:75. doi: 10.1007/s11103-012-9885-2.”

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, YQ., Wu, ZW. et al. Selection of reference genes for RT-qPCR analysis in developing chicken embryonic ovary. Mol Biol Rep 50, 3379–3387 (2023). https://doi.org/10.1007/s11033-023-08280-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08280-0

Keywords

Navigation