Skip to main content
Log in

An update on CRISPR-Cas12 as a versatile tool in genome editing

  • Review article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Gene editing techniques, which help in modification of any DNA sequence at ease, have revolutionized the world of Genetic engineering. Although there are other gene-editing techniques, CRISPR has emerged as the chief and most preferred tool due to its simplicity and capacity to execute effective gene editing in a wide range of organisms. Although Cas9 has widely been employed for genetic modification over the years, Cas12 systems have lately emerged as a viable option. This review primarily focuses on assessing Cas12-mediated mutagenesis and elucidating the editing efficacy of both Cpf1 (Cas12a) and C2c1 (Cas12b) systems in microbes, plants, and other species. Also, we reviewed several genetic alterations that have been performed with these Cas12 systems to improve editing efficiency. Furthermore, the experimental benefits and applications of Cas12 systems are highlighted in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CRISPR:

Clustered regularly interspaced short palindromic repeats

Cas:

CRISPR-associated

crRNA:

CRISPR RNA

TracrRNA:

Trans-acting CRISPR RNA

PAM:

Protospacer adjacent motif

NHEJ:

Non-homologous end joining

HDR:

Homology directed repair

PNSB:

Purple non-sulfur bacteria

DSB:

Double-strand break

TALEN:

Transcription activator-like effector nucleases

ZFN:

Zinc finger nuclease

PEG:

Polyethylene glycol

XCC:

Xanthamonas campestris Pv. campestris

ssODN:

Single stranded oligo donor

PCR:

Polymerase chain reaction

CAR:

Chimeric antigen receptor

FACS:

Fluorescence-activated cell sorting

TIDE:

Tracking of indels by decomposition

CCR5:

CC chemokine receptor 5

References

  1. Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJ, Charpentier E, Cheng D, Haft DH, Horvath P (2020) Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18:67–83

    CAS  PubMed  Google Scholar 

  2. Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Abudayyeh OO, Gootenberg JS, Makarova KS, Wolf YI (2017) Diversity and evolution of class 2 CRISPR–Cas systems. Nat Rev Microbiol 15:169–182

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, Van Der Oost J, Regev A (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Peng R, Lin G, Li J (2016) Potential pitfalls of CRISPR/Cas9-mediated genome editing. FEBS J 283:1218–1231

    CAS  PubMed  Google Scholar 

  5. Bandyopadhyay A, Kancharla N, Javalkote VS, Dasgupta S, Brutnell TP (2020) CRISPR-Cas12a (Cpf1): a versatile tool in the plant genome editing tool box for agricultural advancement. Front Plant Sci 11:1589

    Google Scholar 

  6. Liang M, Li Z, Wang W, Liu J, Liu L, Zhu G, Karthik L, Wang M, Wang KF, Wang Z et al (2019) A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules. Nat Commun 10:3672. https://doi.org/10.1038/s41467-019-11648-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. An Y, Geng Y, Yao J, Fu C, Lu M, Wang C, Du J (2020) Efficient genome editing in populus using CRISPR/Cas12a. Front Plant Sci 11.

  8. Vu TV, Sivankalyani V, Kim EJ, Doan DTH, Tran MT, Kim J, Sung YW, Park M, Kang YJ, Kim JY (2020) Highly efficient homology-directed repair using CRISPR/Cpf1-geminiviral replicon in tomato. Plant Biotechnol J 18:2133–2143

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fernandez JP, Vejnar CE, Giraldez AJ, Rouet R, Moreno-Mateos MA (2018) Optimized CRISPR-Cpf1 system for genome editing in zebrafish. Methods 150:11–18

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA (2018) CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360:436–439

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Strecker J, Jones S, Koopal B, Schmid-Burgk J, Zetsche B, Gao L, Makarova KS, Koonin EV, Zhang F (2019) Engineering of CRISPR-Cas12b for human genome editing. Nat Commun 10:1–8

    Google Scholar 

  12. Gao Z, Fan M, Das AT, Herrera-Carrillo E, Berkhout B (2020) Extinction of all infectious HIV in cell culture by the CRISPR-Cas12a system with only a single crRNA. Nucleic Acids Res 48:5527–5539

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Safari F, Zare K, Negahdaripour M, Barekati-Mowahed M, Ghasemi Y (2019) CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell Biosci 9:1–21

    Google Scholar 

  14. Modrzejewski D, Hartung F, Lehnert H, Sprink T, Kohl C, Keilwagen J, Wilhelm R (1838) Which factors affect the occurrence of off-target effects caused by the use of CRISPR/Cas: a systematic review in plants. Front Plant Sci 2020:11

    Google Scholar 

  15. Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM, McCaw ZR, Aryee MJ, Joung JK (2016) Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 34:869–874

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Moon SB, Lee JM, Kang JG, Lee N-E, Ha D-I, Kim SH, Yoo K, Kim D, Ko J-H, Kim Y-S (2018) Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3′-overhang. Nat Commun 9:1–11

    Google Scholar 

  17. Hao W, Suo F, Lin Q, Chen Q, Zhou L, Liu Z, Cui W, Zhou Z (2020) Design and construction of portable CRISPR-Cpf1-mediated genome editing in Bacillus subtilis 168 oriented toward multiple utilities. Front Bioeng Biotechnol 8:1043

    Google Scholar 

  18. Alok A, Sandhya D, Jogam P, Rodrigues V, Bhati KK, Sharma H, Kumar J (2020) The rise of the CRISPR/Cpf1 system for efficient genome editing in plants. Front Plant Sci 11:264

    PubMed  PubMed Central  Google Scholar 

  19. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. 2012.

  20. Bruins M (2009) The evolution and contribution of plant breeding to global agriculture. In: Proceedings of the proceedings of the second world seed conference: responding to the challenges of a changing world: the role of new plant varieties and high quality seed in agriculture, pp 18–31.

  21. Fonfara I, Richter H, Bratovič M, Le Rhun A, Charpentier E (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532:517–521

    CAS  PubMed  Google Scholar 

  22. Li B, Rui H, Li Y, Wang Q, Alariqi M, Qin L, Sun L, Ding X, Wang F, Zou J (1862) Robust CRISPR/Cpf1 (Cas12a)-mediated genome editing in allotetraploid cotton (Gossypium hirsutum). Plant Biotechnol J 2019:17

    Google Scholar 

  23. Wang Q, Alariqi M, Wang F, Li B, Ding X, Rui H, Li Y, Xu Z, Qin L, Sun L (2020) The application of a heat-inducible CRISPR/Cas12b (C2c1) genome editing system in tetraploid cotton (G. hirsutum) plants. Plant Biotechnol J 18:2436–2443

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu K, Liu Z, Gui H, Geng L, Wei J, Liang D, Lv J, Xu J, Chen X (2021) Highly efficient generation of bacterial leaf blight-resistant and transgene-free rice using a genome editing and multiplexed selection system. BMC Plant Biol 21:1–10

    CAS  Google Scholar 

  25. Gong C, Huang S, Song R, Qi W (2021) Comparative study between the CRISPR/Cpf1 (Cas12a) and CRISPR/Cas9 systems for multiplex gene editing in maize. Agriculture 11:429

    CAS  Google Scholar 

  26. Zhou Y, Liu X, Wu J, Zhao G, Wang J (2020) CRISPR-Cas12a-assisted genome editing in Amycolatopsis mediterranei. Front Bioeng Biotechnol 8:698

    PubMed  PubMed Central  Google Scholar 

  27. Jiang Y, Qian F, Yang J, Liu Y, Dong F, Xu C, Sun B, Chen B, Xu X, Li Y (2017) CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun 8:1–11

    Google Scholar 

  28. Li L, Wei K, Zheng G, Liu X, Chen S, Jiang W, Lu Y (2018) CRISPR-Cpf1-assisted multiplex genome editing and transcriptional repression in Streptomyces. Appl Environ Microbiol 84:e00827-e1818

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang Y, Yuan J (2020) CRISPR/Cas12a mediated genome engineering in photosynthetic bacteria. bioRxiv

  30. Shen W, Zhang J, Geng B, Qiu M, Hu M, Yang Q, Bao W, Xiao Y, Zheng Y, Peng W (2019) Establishment and application of a CRISPR–Cas12a assisted genome-editing system in Zymomonas mobilis. Microb Cell Fact 18:1–11

    Google Scholar 

  31. Świat MA, Dashko S, den Ridder M, Wijsman M, van der Oost J, Daran J-M, Daran-Lapujade P (2017) Fn Cpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae. Nucleic Acids Res 45:12585–12598

    PubMed  PubMed Central  Google Scholar 

  32. Jiménez A, Hoff B, Revuelta JL (2020) Multiplex genome editing in Ashbya gossypii using CRISPR-Cpf1. New Biotechnol 57:29–33

    Google Scholar 

  33. Vanegas KG, Jarczynska ZD, Strucko T, Mortensen UH (2019) Cpf1 enables fast and efficient genome editing in Aspergilli. Fungal Biol Biotechnol 6:1–10

    Google Scholar 

  34. Li Z-H, Wang F-Q, Wei D-Z (2018) Self-cloning CRISPR/Cpf1 facilitated genome editing in Saccharomyces cerevisiae. Bioresour Bioprocess 5:1–12

    Google Scholar 

  35. Ramesh A, Ong T, Garcia JA, Adams J, Wheeldon I (2020) Guide RNA engineering enables dual purpose CRISPR-Cpf1 for simultaneous gene editing and gene regulation in Yarrowia lipolytica. ACS Synth Biol 9:967–971

    CAS  PubMed  Google Scholar 

  36. Verwaal R, Buiting-Wiessenhaan N, Dalhuijsen S, Roubos JA (2018) CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae. Yeast 35:201–211

    CAS  PubMed  Google Scholar 

  37. Zhang X, Gu S, Zheng X, Peng S, Li Y, Lin Y, Liang S (2021) A novel and efficient genome editing tool assisted by CRISPR-Cas12a/Cpf1 for Pichia pastoris. ACS Synth Biol 10:2927–2937

    PubMed  Google Scholar 

  38. Abdulrachman D, Eurwilaichitr L, Champreda V, Chantasingh D, Pootanakit K (2021) Development of a CRISPR/Cpf1 system for targeted gene disruption in Aspergillus aculeatus TBRC 277. BMC Biotechnol 21:1–13. https://doi.org/10.1186/s12896-021-00669-8

    Article  CAS  Google Scholar 

  39. Bigelyte G, Young JK, Karvelis T, Budre K, Zedaveinyte R, Djukanovic V, Van Ginkel E, Paulraj S, Gasior S, Jones S (2021) Miniature type VF CRISPR-Cas nucleases enable targeted DNA modification in cells. Nat Commun 12:1–8

    Google Scholar 

  40. Breinig M, Schweitzer AY, Herianto AM, Revia S, Schaefer L, Wendler L, Cobos Galvez A, Tschaharganeh DF (2019) Multiplexed orthogonal genome editing and transcriptional activation by Cas12a. Nat Methods 16:51–54

    CAS  PubMed  Google Scholar 

  41. Duan N, Tang S, Zeng B, Hu Z, Hu Q, Wu L, Zhou M, Liang D (2021) An episomal CRISPR/Cas12a system for mediating efficient gene editing. Life 11:1262

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu J-J, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KL, Chuck J, Tan D, Knott GJ, Harrington LB (2019) CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566:218–223

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Teng F, Li J, Cui T, Xu K, Guo L, Gao Q, Feng G, Chen C, Han D, Zhou Q (2019) Enhanced mammalian genome editing by new Cas12a orthologs with optimized crRNA scaffolds. Genome Biol 20:1–6

    Google Scholar 

  44. Wu Z, Zhang Y, Yu H, Pan D, Wang Y, Wang Y, Li F, Liu C, Nan H, Chen W (2021) Programmed genome editing by a miniature CRISPR-Cas12f nuclease. Nat Chem Biol 17:1132–1138

    CAS  PubMed  Google Scholar 

  45. Yang M, Wei H, Wang Y, Deng J, Tang Y, Zhou L, Guo G, Tong A (2017) Targeted disruption of V600E-mutant BRAF gene by CRISPR-Cpf1. Molecular Therapy-Nucleic Acids 8:450–458

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Maule G, Casini A, Montagna C, Ramalho AS, De Boeck K, Debyser Z, Carlon MS, Petris G, Cereseto A (2019) Allele specific repair of splicing mutations in cystic fibrosis through AsCas12a genome editing. Nat Commun 10:1–11

    Google Scholar 

  47. Tu M, Lin L, Cheng Y, He X, Sun H, Xie H, Fu J, Liu C, Li J, Chen D (2017) A ‘new lease of life’: FnCpf1 possesses DNA cleavage activity for genome editing in human cells. Nucl Acids Res

  48. Liu Z, Liang J, Chen S, Wang K, Liu X, Liu B, Xia Y, Guo M, Zhang X, Sun G (2020) Genome editing of CCR5 by AsCpf1 renders CD4+ T cells resistance to HIV-1 infection. Cell Biosci 10:1–13

    Google Scholar 

  49. Dai X, Park JJ, Du Y, Kim HR, Wang G, Errami Y, Chen S (2019) One-step generation of modular CAR-T cells with AAV–Cpf1. Nat Methods 16:247–254

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu Z, Schiel JA, Maksimova E, Strezoska Ž, Zhao G, Anderson EM, Wu Y, Warren J, Bartels A, van Brabant Smith A (2020) ErCas12a CRISPR-MAD7 for model generation in human cells, mice, and rats. CRISPR J 3:97–108

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ma X, Chen X, Jin Y, Ge W, Wang W, Kong L, Ji J, Guo X, Huang J, Feng X-H (2018) Small molecules promote CRISPR-Cpf1-mediated genome editing in human pluripotent stem cells. Nat Commun 9:1–7

    Google Scholar 

  52. Zhang Y, Long C, Li H, McAnally JR, Baskin KK, Shelton JM, Bassel-Duby R, Olson EN (2017) CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci Adv 3:e1602814

    PubMed  PubMed Central  Google Scholar 

  53. Dong Z, Qin Q, Hu Z, Zhang X, Miao J, Huang L, Chen P, Lu C, Pan M (2020) CRISPR/Cas12a mediated genome editing enhances Bombyx mori resistance to BmNPV. Front Bioeng Biotechnol 8:841

    PubMed  PubMed Central  Google Scholar 

  54. Port F, Starostecka M, Boutros M (2020) Multiplexed conditional genome editing with Cas12a in Drosophila. Proc Natl Acad Sci 117:22890–22899

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ungerer J, Pakrasi HB (2016) Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Sci Rep 6:1–9

    Google Scholar 

  56. Hesp K, Flores Alvarez JL, Alexandru A-M, van der Linden J, Martens DE, Wijffels RH, Pomponi SA (2020) CRISPR/Cas12a-mediated gene editing in Geodia barretti sponge cell culture. Front Marine Sci 7:1134

    Google Scholar 

  57. Zischewski J, Fischer R, Bortesi L (2017) Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol Adv 35:95–104

    CAS  PubMed  Google Scholar 

  58. Peng C, Wang H, Xu X, Wang X, Chen X, Wei W, Lai Y, Liu G, Godwin ID, Li J (2018) High-throughput detection and screening of plants modified by gene editing using quantitative real-time polymerase chain reaction. Plant J 95:557–567

    CAS  PubMed  Google Scholar 

  59. Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ, Bhat S, Emslie KR (2012) Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 84:1003–1011

    CAS  PubMed  Google Scholar 

  60. Peng C, Zheng M, Ding L, Chen X, Wang X, Feng X, Wang J, Xu J (2020) Accurate detection and evaluation of the gene-editing frequency in plants using droplet digital PCR. Front Plant Sci 11:610790

    PubMed  PubMed Central  Google Scholar 

  61. Dehairs J, Talebi A, Cherifi Y, Swinnen JV (2016) CRISP-ID: decoding CRISPR mediated indels by Sanger sequencing. Sci Rep 6:1–5

    Google Scholar 

  62. Atkins A, Chung C-H, Allen AG, Dampier W, Gurrola TE, Sariyer IK, Nonnemacher MR, Wigdahl B (2021) Off-target analysis in gene editing and applications for clinical translation of CRISPR/Cas9 in HIV-1 therapy. Front Genome Ed 16.

  63. Yau EH, Rana TM (2018) Next-generation sequencing of genome-wide CRISPR screens. In: Next generation sequencing. Springer, New York, pp 203–216

    Google Scholar 

  64. Smurnyy Y, Cai M, Wu H, McWhinnie E, Tallarico JA, Yang Y, Feng Y (2014) DNA sequencing and CRISPR-Cas9 gene editing for target validation in mammalian cells. Nat Chem Biol 10:623–625

    CAS  PubMed  Google Scholar 

  65. Wu F, Qiao X, Zhao Y, Zhang Z, Gao Y, Shi L, Du H, Wang L, Zhang YJ, Zhang Y (2020) Targeted mutagenesis in Arabidopsis thaliana using CRISPR-Cas12b/C2c1. J Integr Plant Biol 62:1653–1658

    CAS  PubMed  Google Scholar 

  66. Yin X, Biswal AK, Dionora J, Perdigon KM, Balahadia CP, Mazumdar S, Chater C, Lin H-C, Coe RA, Kretzschmar T (2017) CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Rep 36:745–757

    CAS  PubMed  Google Scholar 

  67. Pu X, Liu L, Li P, Huo H, Dong X, Xie K, Yang H, Liu L (2019) A CRISPR/LbCas12a-based method for highly efficient multiplex gene editing in Physcomitrella patens. Plant J 100:863–872

    CAS  PubMed  Google Scholar 

  68. Xu R, Qin R, Li H, Li D, Li L, Wei P, Yang J (2017) Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol J 15:713–717

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Jia H, Orbović V, Wang N (2019) CRISPR-LbCas12a-mediated modification of citrus. Plant Biotechnol J 17:1928–1937

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Li S, Li J, Zhang J, Du W, Fu J, Sutar S, Zhao Y, Xia L (2018) Synthesis-dependent repair of Cpf1-induced double strand DNA breaks enables targeted gene replacement in rice. J Exp Bot 69:4715–4721

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Gong C, Huang S, Song R, Qi W (2021) Comparative study between the CRISPR/Cpf1 and CRISPR/Cas9 systems for multiplex gene editing in maize.

  72. Endo A, Masafumi M, Kaya H, Toki S (2016) Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci Rep 6:1–9

    Google Scholar 

  73. Kim H, Choi J, Won K-H (2020) A stable DNA-free screening system for CRISPR/RNPs-mediated gene editing in hot and sweet cultivars of Capsicum annuum. BMC Plant Biol 20:1–12

    Google Scholar 

  74. Kim H, Kim S-T, Ryu J, Kang B-C, Kim J-S, Kim S-G (2017) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun 8:1–7

    Google Scholar 

  75. Dong J, Kan B, Liu H, Zhan M, Wang S, Xu G, Han R, Ni Y (2020) CRISPR-Cpf1-assisted engineering of Corynebacterium glutamicum SNK118 for enhanced l-ornithine production by NADP-dependent glyceraldehyde-3-phosphate dehydrogenase and NADH-dependent glutamate dehydrogenase. Appl Biochem Biotechnol 1–13.

  76. Sun B, Yang J, Yang S, Ye RD, Chen D, Jiang Y (2018) A CRISPR-Cpf1-assisted non-homologous end joining genome editing system of Mycobacterium smegmatis. Biotechnol J 13:1700588

    Google Scholar 

  77. Yan M-Y, Yan H-Q, Ren G-X, Zhao J-P, Guo X-P, Sun Y-C (2017) CRISPR-Cas12a-assisted recombineering in bacteria. Appl Environ Microbiol 83:e00947-e1917

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang J, Hong W, Zong W, Wang P, Wang Y (2018) Markerless genome editing in Clostridium beijerinckii using the CRISPR-Cpf1 system. J Biotechnol 284:27–30

    CAS  PubMed  Google Scholar 

  79. Ao X, Yao Y, Li T, Yang T-T, Dong X, Zheng Z-T, Chen G-Q, Wu Q, Guo Y (2018) A multiplex genome editing method for Escherichia coli based on CRISPR-Cas12a. Front Microbiol 9:2307

    PubMed  PubMed Central  Google Scholar 

  80. Hong W, Zhang J, Cui G, Wang L, Wang Y (2018) Multiplexed CRISPR-Cpf1-mediated genome editing in Clostridium difficile toward the understanding of pathogenesis of C. difficile infection. ACS Synth Biol 7:1588–1600

    CAS  PubMed  Google Scholar 

  81. Kim HJ, Oh SY, Lee SJ (2020) Single-base genome editing in Corynebacterium glutamicum with the help of negative selection by target-mismatched CRISPR/Cpf1. 1583–1593

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gothandam Kodiveri Muthukaliannan.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthilnathan, R., Ilangovan, I., Kunale, M. et al. An update on CRISPR-Cas12 as a versatile tool in genome editing. Mol Biol Rep 50, 2865–2881 (2023). https://doi.org/10.1007/s11033-023-08239-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08239-1

Keywords

Navigation