Skip to main content
Log in

Glyoxal-derived advanced glycation end-products, Nε-carboxymethyl-lysine, and glyoxal-derived lysine dimer induce apoptosis-related gene expression in hepatocytes

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Advanced glycation end-products (AGEs) are proteins or lipids that have been glycated nonenzymatically by reducing sugars and their derivatives such as methylglyoxal. AGEs are known to cause inflammation, oxidative stress, and diseases in the human body. The toxic effects of AGEs and their structures on the origin of the protein being modified have not been well studied.

Methods and results

Five different types of AGEs: AGE1 (glucose-derived), AGE2 (glyceraldehyde-derived), AGE3 (glycolaldehyde-derived), AGE4 (methylglyoxal-derived), and AGE5 (glyoxal-derived); were used to examine the effect of AGEs on HepG2 cells. AGE2 through 5 increase the production of reactive oxygen species (ROS) in liver cells, an initiating factor for apoptosis. At the mRNA and protein levels, AGE5 treatment showed the greatest increase in expression of apoptosis-related factors such as Bax, p53, and Caspase 3. Quantitative analysis revealed that Nε-carboxymethyl-lysine (CML) and glyoxal-lysine dimer (GOLD) were the important types of AGE5. The ROS generation and the expression of apoptotic factors both increased when cells were treated with CML and GOLD.

Conclusion

These findings suggest that AGE5 treatment activates the apoptosis-related gene expression in hapatocytes, with CML and GOLD as potential major AGE compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data and materials availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  1. Iwamoto K, Kanno K, Hyogo H, Yamagishi S-I et al (2008) Advanced glycation end products enhance the proliferation and activation of hepatic stellate cells. J Gastroenterol 43:298–304. https://doi.org/10.1007/s00535-007-2152-7

    Article  CAS  PubMed  Google Scholar 

  2. Semba RD, Nicklett EJ, Ferrucci L (2010) Does accumulation of advanced glycation end products contribute to the aging phenotype? Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences 65:963–975. https://doi.org/10.1093/gerona/glq074

    Article  CAS  Google Scholar 

  3. Luevano-Contreras C, Chapman-Novakofski K (2010) Dietary advanced glycation end products and aging. Nutrients 2:1247–1265. https://doi.org/10.3390/nu2121247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Poulsen MW, Hedegaard RV, Andersen JM, de Courten B et al (2013) Advanced glycation endproducts in food and their effects on health. Food Chem Toxicol 60:10–37. https://doi.org/10.1016/j.fct.2013.06.052

    Article  CAS  PubMed  Google Scholar 

  5. Nowotny K, Jung T, Höhn A, Weber D et al (2015) Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 5:194–222. https://doi.org/10.3390/biom5010194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Palimeri S, Palioura E, Diamanti-Kandarakis E (2015) Current perspectives on the health risks associated with the consumption of advanced glycation end products: recommendations for dietary management. Diabetes metabolic syndrome and obesity: targets and therapy 8:415. https://doi.org/10.2147/DMSO.S63089

    Article  CAS  PubMed  Google Scholar 

  7. Bierhaus A, Hofmann MA, Ziegler R, Nawroth PP (1998) AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovascular Res 37:586–600. https://doi.org/10.1016/S0008-6363(97)00233-2

    Article  CAS  Google Scholar 

  8. Bengmark S (2007) Advanced glycation and lipoxidation end products–amplifiers of inflammation: the role of food. J Parenter Enter Nutr 31:430–440. https://doi.org/10.1177/0148607107031005430

    Article  CAS  Google Scholar 

  9. Del Turco S, Basta G (2012) An update on advanced glycation endproducts and atherosclerosis. BioFactors 38:266–274. https://doi.org/10.1002/biof.1018

    Article  CAS  PubMed  Google Scholar 

  10. Walker D, Lue LF, Paul G, Patel A et al (2015) Receptor for advanced glycation endproduct modulators: a new therapeutic target in Alzheimer’s disease. Expert Opin Investig Drugs 24:393–399. https://doi.org/10.1517/13543784.2015.1001490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takeuchi M, Yamagishi S-i (2009) Involvement of toxic AGEs (TAGE) in the pathogenesis of diabetic vascular complications and Alzheimer’s disease. J Alzheimers Dis 16:845–858. https://doi.org/10.3233/JAD-2009-0974

    Article  CAS  PubMed  Google Scholar 

  12. Sorci G, Riuzzi F, Giambanco I, Donato R (2013) RAGE in tissue homeostasis, repair and regeneration. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res 1833:101–109. https://doi.org/10.1016/j.bbamcr.2012.10.021

    Article  CAS  Google Scholar 

  13. Banin S, Moyal L, Shieh S-Y, Taya Y et al (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281:1674–1677. https://doi.org/10.1126/science.281.5383.1674

    Article  CAS  PubMed  Google Scholar 

  14. Petrache I, Choi ME, Otterbein LE, Chin BY et al (1999) Mitogen-activated protein kinase pathway mediates hyperoxia-induced apoptosis in cultured macrophage cells. Am J Physiology-Lung Cell Mol Physiol 277:L589–L595. https://doi.org/10.1152/ajplung.1999.277.3.L589

    Article  CAS  Google Scholar 

  15. Green D, Reed J (1998) Mitochondria and apoptosis. Science 281:1309–1312. https://doi.org/10.1126/science.281.5381.1309

    Article  CAS  PubMed  Google Scholar 

  16. Enari M, Sakahira H, Yokoyama H, Okawa K et al (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50. https://doi.org/10.1038/34112

    Article  CAS  PubMed  Google Scholar 

  17. bio Klamt F, Dal-Pizzol F, da Frota MLC Jr, Walz R et al (2001) Imbalance of antioxidant defense in mice lacking cellular prion protein. Free Radic Biol Med 30:1137–1144. https://doi.org/10.1016/S0891-5849(01)00512-3

    Article  CAS  PubMed  Google Scholar 

  18. Crack PJ, Taylor JM (2005) Reactive oxygen species and the modulation of stroke. Free Radic Biol Med 38:1433–1444. https://doi.org/10.1016/j.freeradbiomed.2005.01.019

    Article  CAS  PubMed  Google Scholar 

  19. Ermak G, Davies KJ (2002) Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 38:713–721. https://doi.org/10.1016/S0161-5890(01)00108-0

    Article  CAS  PubMed  Google Scholar 

  20. Su C-C, Lin J-G, Li T-M, Chung J-G et al (2006) Curcumin-induced apoptosis of human colon cancer colo 205 cells through the production of ROS, Ca2 + and the activation of caspase-3. Anticancer Res 26:4379–4389

    CAS  PubMed  Google Scholar 

  21. Simbula G, Columbano A, Ledda-Columbano G, Sanna L et al (2007) Increased ROS generation and p53 activation in α-lipoic acid-induced apoptosis of hepatoma cells. Apoptosis 12:113–123. https://doi.org/10.1007/s10495-006-0487-9

    Article  CAS  PubMed  Google Scholar 

  22. Reinecke F, Levanets O, Olivier Y, Louw R et al (2006) Metallothionein isoform 2A expression is inducible and protects against ROS-mediated cell death in rotenone-treated HeLa cells. Biochem J 395:405–415. https://doi.org/10.1042/BJ20051253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yoshida T, Yamagishi S-i, Nakamura K, Matsui T et al (2006) Pigment epithelium-derived factor (PEDF) inhibits advanced glycation end product (AGE)-induced C-reactive protein expression in hepatoma cells by suppressing Rac-1 activation. FEBS Lett 580:2788–2796. https://doi.org/10.1016/j.febslet.2006.04.050

    Article  CAS  PubMed  Google Scholar 

  24. Vinken M, Rogiers V (2015) Protocols in in vitro hepatocyte research. Springer

  25. Ramirez T, Strigun A, Verlohner A, Huener H-A et al (2018) Prediction of liver toxicity and mode of action using metabolomics in vitro in HepG2 cells. Arch Toxicol 92:893–906. https://doi.org/10.1007/s00204-017-2079-6

    Article  CAS  PubMed  Google Scholar 

  26. Nam M-H, Lee H-S, Seomun Y, Lee Y et al (2011) Monocyte-endothelium-smooth muscle cell interaction in co-culture: proliferation and cytokine productions in response to advanced glycation end products. Biochim et Biophys Acta (BBA)-General Subj 1810:907–912. https://doi.org/10.1016/j.bbagen.2011.06.005

    Article  CAS  Google Scholar 

  27. Takeuchi M, Bucala R, Suzuki T, Ohkubo T et al (2000) Neurotoxicity of advanced glycation end-products for cultured cortical neurons. J Neuropathology Experimental Neurol 59:1094–1105. https://doi.org/10.1093/jnen/59.12.1094

    Article  CAS  Google Scholar 

  28. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  29. Keller A, Mohamed A, Dröse S, Brandt U et al (2004) Analysis of dichlorodihydrofluorescein and dihydrocalcein as probes for the detection of intracellular reactive oxygen species. Free Radic Res 38:1257–1267. https://doi.org/10.1080/10715760400022145

    Article  CAS  PubMed  Google Scholar 

  30. Hellwig M, Witte S, Henle T (2016) Free and protein-bound Maillard reaction products in beer: method development and a survey of different beer types. J Agric Food Chem 64:7234–7243. https://doi.org/10.1021/acs.jafc.6b02649

    Article  CAS  PubMed  Google Scholar 

  31. Sakasai-Sakai A, Takata T, Takeuchi M (2020) Intracellular toxic Advanced glycation end-products promote the production of reactive oxygen species in HepG2 cells. Int J Mol Sci 21:4861. https://doi.org/10.3390/ijms21144861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cherukuri DP, Nelson V, Mark A (2008) Role of reactive oxygen species (ROS) and JNKs in selenite-induced apoptosis in HepG2 cells. Cancer Biol Ther 7:697–698. https://doi.org/10.4161/cbt.7.5.6088

    Article  CAS  PubMed  Google Scholar 

  33. Raj L, Ide T, Gurkar AU, Foley M et al (2011) Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475:231–234. https://doi.org/10.1038/nature10167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Trachootham D, Zhou Y, Zhang H, Demizu Y et al (2006) Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate. Cancer Cell 10:241–252. https://doi.org/10.1016/j.ccr.2006.08.009

    Article  CAS  PubMed  Google Scholar 

  35. Yang K (2011) Formation and metabolism of sugar metabolites, glyoxal and methylglyoxal, and their molecular cytotoxic mechanisms in isolated rat hepatocytes. University of Toronto

  36. Thornalley PJ, Langborg A, Minhas HS (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 344:109–116. https://doi.org/10.1042/bj3440109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lapolla A, Flamini R, Dalla Vedova A, Senesi A et al (2003) Glyoxal and methylglyoxal levels in diabetic patients: quantitative determination by a new GC/MS method. Clin Chem Lab Med 41:1166–1173. https://doi.org/10.1515/CCLM.2003.180

    Article  CAS  PubMed  Google Scholar 

  38. Lopez-Clavijo AF, Duque-Daza CA, Soulby A, Canelon IR et al (2014) Unexpected crosslinking and diglycation as advanced glycation end-products from glyoxal. J Am Soc Mass Spectrom 25:2125–2133. https://doi.org/10.1007/s13361-014-0996-7

    Article  CAS  PubMed  Google Scholar 

  39. Shrivastava S, Jeengar MK, Reddy VS, Reddy GB et al (2015) Anticancer effect of celastrol on human triple negative breast cancer: possible involvement of oxidative stress, mitochondrial dysfunction, apoptosis and PI3K/Akt pathways. Exp Mol Pathol 98:313–327. https://doi.org/10.1016/j.yexmp.2015.03.031

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Y, Bao YL, Wu Y, Yu CL et al (2013) Alantolactone induces apoptosis in RKO cells through the generation of reactive oxygen species and the mitochondrial pathway. Mol Med Rep 8:967–972. https://doi.org/10.3892/mmr.2013.1640

    Article  CAS  PubMed  Google Scholar 

  41. Tomek M, Akiyama T, Dass CR (2012) Role of Bcl-2 in tumour cell survival and implications for pharmacotherapy. J Pharm Pharmacol 64:1695–1702. https://doi.org/10.1111/j.2042-7158.2012.01526.x

    Article  CAS  PubMed  Google Scholar 

  42. Paget V, Moche H, Kortulewski T, Grall R et al (2015) Human cell line-dependent WC-Co nanoparticle cytotoxicity and genotoxicity: a key role of ROS production. Toxicol Sci 143:385–397. https://doi.org/10.1093/toxsci/kfu238

    Article  CAS  PubMed  Google Scholar 

  43. Amaral JD, Xavier JM, Steer CJ, Rodrigues CM (2010) The role of p53 in apoptosis. Discov Med 9:145–152. https://doi.org/Joana-D-Amaral/2010/02/20/the-role-of-p53-in-apoptosis

    PubMed  Google Scholar 

  44. Cepero E, King AM, Coffey LM, Perez RG et al (2005) Caspase-9 and effector caspases have sequential and distinct effects on mitochondria. Oncogene 24:6354–6366. https://doi.org/10.1038/sj.onc.1208793

    Article  CAS  PubMed  Google Scholar 

  45. Dei R, Takeda A, Niwa H, Li M et al (2002) Lipid peroxidation and advanced glycation end products in the brain in normal aging and in Alzheimer’s disease. Acta Neuropathol 104:113–122. https://doi.org/10.1007/s00401-002-0523-y

    Article  CAS  PubMed  Google Scholar 

  46. Ikeda K, Higashi T, Sano H, Jinnouchi Y et al (1996) N ε-(carboxymethyl) lysine protein adduct is a major immunological epitope in proteins modified with advanced glycation end products of the Maillard reaction. Biochemistry 35:8075–8083. https://doi.org/10.1021/bi9530550

    Article  CAS  PubMed  Google Scholar 

  47. Hull GL, Woodside JV, Ames JM, Cuskelly GJ (2012) Nε-(carboxymethyl) lysine content of foods commonly consumed in a western style diet. Food Chem 131:170–174. https://doi.org/10.1016/j.foodchem.2011.08.055

    Article  CAS  Google Scholar 

  48. Frye EB, Degenhardt TP, Thorpe SR, Baynes JW (1998) Role of the Maillard reaction in aging of tissue proteins Advanced glycation end product-dependent increase in imidazolium cross-links in human lens proteins. J Biol Chem 273:18714–18719. https://doi.org/10.1074/jbc.273.30.18714

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Korea Food Research Institute (KFRI) funded by the Ministry of Science, for supporting this project under the Main Research Program (E0164400-04), Korea University Grant (K1922591), and School of Life Sciences & Biotechnology of Korea University (BK21PLUS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Won Lee.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Jeong, YJ., Ha, S.K. et al. Glyoxal-derived advanced glycation end-products, Nε-carboxymethyl-lysine, and glyoxal-derived lysine dimer induce apoptosis-related gene expression in hepatocytes. Mol Biol Rep 50, 2511–2520 (2023). https://doi.org/10.1007/s11033-022-08130-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08130-5

Keywords

Navigation