Skip to main content
Log in

Analysis of genetic diversity and population structure of oilseed crop noug (Guizotia abyssinica) accessions collected from Ethiopia

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Noug is an Ethiopian indigenous oilseed crop cultivated primarily for its oil and various economic importance. Evaluating the extent of genetic diversity within and among populations is one of the most important steps in breeding and conservation measures. Thus, this study aimed to uncover the extent of genetic diversity and population structure of noug accessions collected from different regions of Ethiopia using microsatellite markers.

Methods and results

A total of 161 accessions from fourteen regions of Ethiopia, including some from Eritrea using 13 microsatellite markers were analyzed. All the 13 microsatellite markers were polymorphic and highly informative with a mean PIC value of 0.82. The analysis generated a total of 158 alleles with a mean of 12.15 per locus. The overall mean of Shannon information index and heterozygosity/gene diversity were 1.57 and 0.74, respectively suggesting the presence of higher genetic diversity across the collection regions. AMOVA revealed that 96.06% of the total genetic variation was attributed to within populations while only 3.94% was attributed to among populations. Likewise, the dendrogram clustering, PCoA, and the model-based population structure analysis didn’t exactly corresponded the grouping of the genotypes according to their regions of origin.

Conclusion

The microsatellites used in the present study are highly informative and could be targeted for developing markers for future marker-assisted breeding. Genotypes collected from Shewa, Wollo, Gojjam, Tigray, and B/G showed a higher genetic diversity and private alleles as compared to other populations. Hence, these areas can be considered as hotspots which could help for the identification of genotypes that can be used in breeding programs as well as for the implementation of further conservation programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

This is part of M.Sc. thesis for the first author and can be found on the University’s repository available at “http://etd.aau.edu.et/handle/123456789/27424”.

References

  1. Murthy HN, Hiremath SC, Salimath SS (1993) Origin, evolution and genome differentiation in Guizotia abyssinica and its wild species. Theoret Appl Genet 87:587–592. https://doi.org/10.1007/BF00221882

    Article  CAS  Google Scholar 

  2. Dagne K (1994) Meiosis in interspecific hybrids and genomic interrelationships in Guizotia Cass. (Compositae). Hereditas 121:119–129. https://doi.org/10.1111/j.1601-5223.1994.00119.x

    Article  Google Scholar 

  3. Hiremath SC, Murthy HN (1988) Domestication of niger (Guizotia abyssinica). Euphytica 37:225–228

    Article  Google Scholar 

  4. Dempewolf H, Tesfaye M, Teshome A et al (2015) Patterns of domestication in the Ethiopian oil-seed crop noug (Guizotia abyssinica). Evol Appl 8:464–475. https://doi.org/10.1111/eva.12256

    Article  CAS  Google Scholar 

  5. Getinet A, Sharma S (1996) Niger, Guizotia abyssinica (L. f.) Cass

  6. CSA (Central Statistical Agency) (2019) Sample survey area and production of major crops (private peasant holdings, meher season). I:1–58

  7. Alemayehu N, Alemaw G (1997) Highland Oilcrops: a two-decade research experience in Ethiopia

  8. Geleta M, Asfaw Z, Bekele E, Teshome A (2002) Edible oil crops and their integration with the major cereals in North Shewa and South Welo, Central Highlands of Ethiopia: an ethnobotanical perspective. Hereditas 137:29–40. https://doi.org/10.1034/j.1601-5223.2002.1370105.x

    Article  Google Scholar 

  9. Yadav S, Hussain Z, Suneja P et al (2012) Genetic divergence studies in niger (Guizotia abyssinica) germplasm. Biomass Bioenerg 44:64–69. https://doi.org/10.1016/j.biombioe.2012.04.011

    Article  CAS  Google Scholar 

  10. MANR (2016) Plant Variety Release. Protection and Seed quality Control Directorate. Crop Variety Registered 330

  11. Dagne K, Jonsson A (1997) Oil content and fatty acid composition of seeds of Guizotia cass (Compositae). J Sci Food Agric 73:274–278. https://doi.org/10.1002/(SICI)1097-0010(199703)73:3%3c274::AID-JSFA725%3e3.0.CO;2-F

    Article  CAS  Google Scholar 

  12. Geleta M, Stymne S, Bryngelsson T (2011) Variation and inheritance of oil content and fatty acid composition in niger (Guizotia abyssinica). J Food Compos Anal 24:995–1003. https://doi.org/10.1016/j.jfca.2010.12.010

    Article  CAS  Google Scholar 

  13. Kandel H, Porter P (2002) Niger (Guizotia abyssinica)(L. f.) Cass. Production in northwest Minnesota University of Minnesota extension service

  14. Terefe M, Girma D (2022) Development of molecular resources for the genetic improvement of noug (Guizotia abyssinica (L. f) Cass): a mini review. CABI Agriculture and Bioscience https://doi.org/10.1186/s43170-022-00121-7

  15. Mkwaila W, Terpstra KA, Ender M, Kelly JD (2011) Identification of QTL for agronomic traits and resistance to white mold in wild and landrace germplasm of common bean. Plant Breed 130:665–672. https://doi.org/10.1111/j.1439-0523.2011.01876.x

    Article  Google Scholar 

  16. Glaszmann JC, Kilian B, Upadhyaya HD, Varshney RK (2010) Accessing genetic diversity for crop improvement. Curr Opin Plant Biol 13:167–173. https://doi.org/10.1016/j.pbi.2010.01.004

    Article  CAS  Google Scholar 

  17. Singh Kesawat M, Das BK (2009) Molecular markers: it’s application in crop improvement types of molecular markers. J Crop Sci Biotech 12:169–181

    Article  Google Scholar 

  18. Hasan N, Choudhary S, Naaz N et al (2021) Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. J Genet Eng Biotechnol 19:1–26. https://doi.org/10.1186/s43141-021-00231-1

    Article  CAS  Google Scholar 

  19. Geleta M, Bryngelsson T, Bekele E, Dagne K (2007) Genetic diversity of Guizotia abyssinica (L. f.) Cass. (Asteraceae) from Ethiopia as revealed by random amplified polymorphic DNA (RAPD). Genet Resour Crop Evol 54:601–614. https://doi.org/10.1007/s10722-006-0018-0

    Article  Google Scholar 

  20. Geleta M, Bryngelsson T, Bekele E, Dagne K (2008) Assessment of genetic diversity of Guizotia abyssinica (L.f.) Cass. (Asteraceae) from Ethiopia using amplified fragment length polymorphism. Plant Genet Resour 6:41–51. https://doi.org/10.1017/S1479262108913903

    Article  CAS  Google Scholar 

  21. Petros Y, Merker A, Zeleke H (2007) Analysis of genetic diversity of Guizotia abyssinica from Ethiopia using inter simple sequence repeat markers. Hereditas 144:18–24. https://doi.org/10.1111/j.2007.0018-0661.01969.x

    Article  Google Scholar 

  22. Hussain Z, Yadav S, Kumar S et al (2015) Molecular characterization of niger [Guizotia abyssinica (L.f.) Cass.] germplasms diverse for oil parameters. Indian J Biotechnol 14:344–350

    CAS  Google Scholar 

  23. Dempewolf H, Kane NC, Ostevik KL et al (2010) Establishing genomic tools and resources for Guizotia abyssinica (L.f.) Cass.-the development of a library of expressed sequence tags, microsatellite loci, and the sequencing of its chloroplast genome. Mol Ecol Resour 10:1048–1058. https://doi.org/10.1111/j.1755-0998.2010.02859.x

    Article  CAS  Google Scholar 

  24. Abebaw M, Solomon A (2017) Genetic diversity assessment of Guzoita abyssinica using EST derived simple sequence repeats (SSRs) markers. Afr J Plant Sci 11:79–85. https://doi.org/10.5897/ajps2016.1512

    Article  CAS  Google Scholar 

  25. Aboye B, Gebrselassie W, Disasa T (2020) Estimating-the-genetic-diversity-of-ethiopian-noug-guizotia-abyssinica-lf-cass-genotypes-using-ssr-markers

  26. Tsehay S, Ortiz R, Johansson E et al (2020) New transcriptome-based SNP markers for Noug (Guizotia abyssinica) and their conversion to KASP markers for population genetics analyses. Genes 11:1373

    Article  CAS  Google Scholar 

  27. Gebeyehu A, Hammenhag C, Tesfaye K, Vetukuri RR (2022) RNA-seq provides novel genomic resources for noug (Guizotia abyssinica ) and reveals microsatellite frequency and distribution in its transcriptome. Front Plant Sci 13:1–16. https://doi.org/10.3389/fpls.2022.882136

    Article  Google Scholar 

  28. Koilkonda P, Sato S, Tabata S et al (2012) Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp. Mol Breed 30:125–138. https://doi.org/10.1007/s11032-011-9604-8

    Article  CAS  Google Scholar 

  29. DARTs (2000) Plant DNA Extraction Protocol for DArT. Doc 2–3

  30. Pavel AB, Vasile CI (2012) PyElph—a software tool for gel images analysis and phylogenetics. BMC Bioinform. https://doi.org/10.1186/1471-2105-13-9

    Article  Google Scholar 

  31. Liu K, Muse SV (2005) PowerMaker: an integrated analysis environment for genetic maker analysis. Bioinformatics 21:2128–2129. https://doi.org/10.1093/bioinformatics/bti282

    Article  CAS  Google Scholar 

  32. Peakall R, Smouse PE (2012) GenALEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539. https://doi.org/10.1093/bioinformatics/bts460

    Article  CAS  Google Scholar 

  33. Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189. https://doi.org/10.1111/j.1471-8286.2004.00845.x

    Article  CAS  Google Scholar 

  34. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolut Bioinform 1:117693430500100. https://doi.org/10.1177/117693430500100003

    Article  Google Scholar 

  35. Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  Google Scholar 

  36. Takezaki N, Nei M, Tamura K (2010) POPTREE2: software for constructing population trees from allele frequency data and computing other population statistics with windows interface. Mol Biol Evol 27:747–752. https://doi.org/10.1093/molbev/msp312

    Article  CAS  Google Scholar 

  37. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  Google Scholar 

  38. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Article  CAS  Google Scholar 

  39. Kopelman NM, Mayzel J, Jakobsson M et al (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191

    Article  CAS  Google Scholar 

  40. Li Y, Liu J (2018) StructureSelector: a web-based software to select and visualize the optimal number of clusters using multiple methods. Mol Ecol Resour 18:176–177

    Article  Google Scholar 

  41. Botstein D, White RL, Skolnick M, Davis RW (1980) Botstein. Am J Hum Gen 32:314–331

    CAS  Google Scholar 

  42. Lacape J-M, Dessauw D, Rajab M et al (2007) Microsatellite diversity in tetraploid Gossypium germplasm: assembling a highly informative genotyping set of cotton SSRs. Mol Breed 19:45–58

    Article  CAS  Google Scholar 

  43. Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  CAS  Google Scholar 

  44. Iskakova AN, Romanova AA, Voronina EN et al (2014) Allele frequency and genotype distribution of 9 SNPs in the Kazakh population. J Pharmacogenomics Pharmacoproteomics 5:645–2153

    Google Scholar 

  45. Nei M, Roychoudhury AK (1974) Sampling variances of heterozygosity and genetic distance. Genetics 76:379–390. https://doi.org/10.1093/genetics/76.2.379

    Article  CAS  Google Scholar 

  46. Filippi CV, Aguirre N, Rivas JG et al (2015) Population structure and genetic diversity characterization of a sunflower association mapping population using SSR and SNP markers. BMC Plant Biol 15:1–12. https://doi.org/10.1186/s12870-014-0360-x

    Article  CAS  Google Scholar 

  47. Geleta M, Bekele E, Dagne K, Bryngelsson T (2010) Phylogenetics and taxonomic delimitation of the genus Guizotia (Asteraceae) based on sequences derived from various chloroplast DNA regions. Plant Syst Evol 289:77–89. https://doi.org/10.1007/s00606-010-0334-x

    Article  CAS  Google Scholar 

  48. Zeinalzadeh-Tabrizi H, Haliloglu K, Ghaffari M, Hosseinpour A (2018) Assessment of genetic diversity among sunflower genotypes using microsatellite markers. Mol Biol Res Commun 7:143–152. https://doi.org/10.22099/mbrc.2018.30434.1340

    Article  CAS  Google Scholar 

  49. Genet T, Belete K (2000) Phenotypic diversity in the Ethiopian noug germplasm. Afr Crop Sci J 8:137–143

    Article  Google Scholar 

  50. Wright S (1949) The genetical structure of populations. Ann Eugen 15:323–354

    Article  Google Scholar 

  51. Duminil J, Fineschi S, Hampe A et al (2015) From life-history traits ? 169:662–672

  52. Hamrick JL, Godt MJW (1990) Allozyme diversity in plant species. Plant Popul Genet Breed Genet Resour 43–63

  53. Ahmed W, Feyissa T, Tesfaye K, Farrakh S (2021) Genetic diversity and population structure of date palms (Phoenix dactylifera L.) in Ethiopia using microsatellite markers. J Genet Eng Biotechnol 19:1–14. https://doi.org/10.1186/s43141-021-00168-5

    Article  Google Scholar 

  54. Ramachandran TK, Menon PM (1979) Pollination mechanism and inbreeding depression in niger (Guizotia abyssinica Cass.)[oil crops, India]. Madras Agric J

  55. Bekele E, Geleta M, Dagne K et al (2007) Molecular phylogeny of genus Guizotia (Asteraceae) using DNA sequences derived from ITS. Genet Resour Crop Evol 54:1419–1427. https://doi.org/10.1007/s10722-006-9126-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ethiopian Biodiversity Institute (EBI) for the provision of noug-seed samples. The authors are also thankful to the Ethiopian Institute of Agricultural Research (EIAR) and Addis Ababa University, Institute of Biotechnology, for the financial support.

Funding

NA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motbaynor Terefe.

Ethics declarations

Competing interest

The authors declare that they have no competing interest.

Ethical approval and consent to participate

NA.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 16 kb)

11033_2022_8005_MOESM2_ESM.jpg

Supplementary file2 Map showing noug sample collection regions (NB: all the sample areas, points, and boundaries are approximate and have nothing to do with political boundaries). The map was constructed using, ArcGIS_Desktop_1022_es_140418 (JPG 188 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terefe, M., Birmeta, G., Girma, D. et al. Analysis of genetic diversity and population structure of oilseed crop noug (Guizotia abyssinica) accessions collected from Ethiopia. Mol Biol Rep 50, 43–55 (2023). https://doi.org/10.1007/s11033-022-08005-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08005-9

Keywords

Navigation