Skip to main content
Log in

Dual effect of ultraviolet B on cholesterol efflux and regulated by ultraviolet radiation resistance-associated gene-mediated autophagy

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Objective

In addition to diet and metabolism, the occurrence of foam cells and atherosclerosis are also related to environmental factors. Individual studies have shown that ultraviolet B (UVB) can regulate the progression of atherosclerosis, but with different results. Whether or not UVB has a dual effect on atherosclerosis and what mechanism is involved has not been reported.

Methods

After THP-1-derived foam cells were treated with UVB in different ways, the effects of UVB on foam cells were investigated by western blotting, cholesterol efflux experiment, oil red O staining and other methods.

Results

UVB plays a dual role on foam cell formation, and this effect is related to cholesterol efflux. UVB of 50 mJ/cm2 can promote cholesterol efflux in foam cells, while UVB of 200 mJ/cm2 can inhibit cholesterol efflux. UVB induces cholesterol efflux from foam cells in an autophagy-dependent manner, as the beneficial effect of UVB at 50 mJ/cm2 can be reversed by the autophagy inhibitor 3-Methyladenine (3-MA). In addition, silencing the expression of ultraviolet radiation resistance-associated gene (UVRAG) can inhibit autophagy and reduce cholesterol efflux, and overexpressing UVRAG yields the opposite result.

Conclusion

In conclusion, our research proves that UVB exhibits a dual role in foam cell formation by regulating cholesterol efflux. Further more, we also reveal that UVRAG-mediated autophagy is the underlying mechanism of UVB-induced cholesterol efflux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tabas I, Garcia-Cardena G, Owens GK (2015) Recent insights into the cellular biology of atherosclerosis. J Cell Biol 209(1):13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Song P, Fang Z, Wang H et al (2020) Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: a systematic review, meta-analysis, and modelling study. Lancet Glob Health 8(5):e721–e729

    Article  PubMed  Google Scholar 

  3. Wang D, Yang Y, Lei Y et al (2019) Targeting foam cell formation in atherosclerosis: therapeutic potential of natural products. Pharmacol Rev 71(4):596–670

    Article  CAS  PubMed  Google Scholar 

  4. Yu X, Zhang D, Zheng X et al (2019) Cholesterol transport system: an integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 73:65–91

    Article  CAS  PubMed  Google Scholar 

  5. Frambach S, de Haas R, Smeitink J et al (2020) Brothers in arms: ABCA1- and ABCG1-mediated cholesterol efflux as promising targets in cardiovascular disease treatment. Pharmacol Rev 72(1):152–190

    Article  CAS  PubMed  Google Scholar 

  6. Singh R, Kaushik S, Wang Y et al (2009) Autophagy regulates lipid metabolism. Nature 458(7242):1131–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ouimet M, Franklin V, Mak E et al (2011) Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab 13(6):655–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li X, Zhang X, Zheng L et al (2016) Hypericin-mediated sonodynamic therapy induces autophagy and decreases lipids in THP-1 macrophage by promoting ROS-dependent nuclear translocation of TFEB. Cell Death Dis 7(12):e2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He J, Zhang G, Pang Q et al (2017) SIRT6 reduces macrophage foam cell formation by inducing autophagy and cholesterol efflux under ox-LDL condition. FEBS J 284(9):1324–1337

    Article  CAS  PubMed  Google Scholar 

  10. Xiaolong L, Dongmin G, Liu M et al (2020) FGF21 induces autophagy-mediated cholesterol efflux to inhibit atherogenesis via RACK1 up-regulation. J Cell Mol Med 24(9):4992–5006

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cicero AL, Delevoye C, Gilles-Marsens F et al (2015) Exosomes released by keratinocytes modulate melanocyte pigmentation. Nat Commun 6(1):7506

    Article  PubMed  Google Scholar 

  12. Son J, Hwang EC, Kim J (2016) Systematic analyses of the ultraviolet radiation resistance-associated gene product (UVRAG) protein interactome by tandem affinity purification. Arch Pharm Res 39(3):370–379

    Article  CAS  PubMed  Google Scholar 

  13. Liang C, Feng P, Ku B et al (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8(7):688–698

    Article  CAS  PubMed  Google Scholar 

  14. Liang C, Lee J, Inn K et al (2008) Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol 10(7):776–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang X, Wang L, Ireland SC et al (2019) GORASP2/GRASP55 collaborates with the PtdIns3K UVRAG complex to facilitate autophagosome-lysosome fusion. Autophagy 15(10):1787–1800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feng X, Jia Y, Zhang Y et al (2019) Ubiquitination of UVRAG by SMURF1 promotes autophagosome maturation and inhibits hepatocellular carcinoma growth. Autophagy 15(7):1130–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qiang L, Sample A, Shea CR et al (2017) Autophagy gene ATG7 regulates ultraviolet radiation-induced inflammation and skin tumorigenesis. Autophagy 13(12):2086–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen X, Li L, Xu S et al (2018) Ultraviolet B radiation down-regulates ULK1 and ATG7 expression and impairs the autophagy response in human keratinocytes. J Photochem Photobiol B 178:152–164

    Article  CAS  PubMed  Google Scholar 

  19. Sasaki N, Yamashita T, Kasahara K et al (2017) UVB exposure prevents atherosclerosis by regulating immunoinflammatory responses. Arterioscler Thromb Vasc Biol 37(1):66–74

    Article  CAS  PubMed  Google Scholar 

  20. Ferguson AL, Kok LF, Luong JK et al (2019) Exposure to solar ultraviolet radiation limits diet-induced weight gain, increases liver triglycerides and prevents the early signs of cardiovascular disease in mice. Nutr Metabolism Cardiovasc Dis 29(6):633–638

    Article  CAS  Google Scholar 

  21. Sigurdardottir G, Ekman A, Ståhle M et al (2014) Systemic treatment and narrowband ultraviolet B differentially affect cardiovascular risk markers in psoriasis. J Am Acad Dermatol 70(6):1067–1075

    Article  CAS  PubMed  Google Scholar 

  22. Bae JM, Kim YS, Choo EH et al (2021) Both cardiovascular and cerebrovascular events are decreased following long-term NB‐UVB phototherapy in patients with vitiligo: a propensity‐score matching analysis. J Eur Acad Dermatol 35(1):222–229. https://doi.org/10.1111/jdv.16830

    Article  CAS  Google Scholar 

  23. Li X, Qin T, Zhang P et al (2021) Weak UVB irradiation promotes macrophage M2 polarization and stabilizes atherosclerosis. J Cardiovasc Transl. https://doi.org/10.1007/s12265-021-10189-7

    Article  Google Scholar 

  24. Liang X, Liu L, Wang Y et al (2020) Autophagy-driven NETosis is a double-edged sword-review. Biomed Pharmacother 126:110065

    Article  CAS  PubMed  Google Scholar 

  25. Yang Y, Wang H, Wang S et al (2012) GSK3beta signaling is involved in ultraviolet B-induced activation of autophagy in epidermal cells. Int J Oncol 41(5):1782–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Misovic M, Milenkovic D, Martinovic T et al (2013) Short-term exposure to UV-A, UV-B, and UV-C irradiation induces alteration in cytoskeleton and autophagy in human keratinocytes. Ultrastruct Pathol 37(4):241–248

    Article  PubMed  Google Scholar 

  27. Cavinato M, Koziel R, Romani N et al (2017) UVB-induced senescence of human dermal fibroblasts involves impairment of proteasome and enhanced autophagic activity. J Gerontol A Biol Sci Med Sci 72(5):632–639. https://doi.org/10.1093/gerona/glw150

    Article  CAS  PubMed  Google Scholar 

  28. Liu W, Otkur W, Li L et al (2013) Autophagy induced by silibinin protects human epidermoid carcinoma A431 cells from UVB-induced apoptosis. J Photochem Photobiol B 123:23–31

    Article  CAS  PubMed  Google Scholar 

  29. Liang X, Wang C, Sun Y et al (2019) p62/mTOR/LXRα pathway inhibits cholesterol efflux mediated by ABCA1 and ABCG1 during autophagy blockage. Biochem Bioph Res Co 514(4):1093–1100

    Article  CAS  Google Scholar 

  30. Song Y, Quach C, Liang C (2020) UVRAG in autophagy, inflammation, and cancer. Autophagy 2:387–388

    Article  Google Scholar 

  31. Song Z, An L, Ye Y et al (2014) Essential role for UVRAG in autophagy and maintenance of cardiac function. Cardiovasc Res 101(1):48–56

    Article  CAS  PubMed  Google Scholar 

  32. Deng H, Chu X, Song Z et al (2017) MicroRNA-1185 induces endothelial cell apoptosis by targeting UVRAG and KRIT1. Cell Physiol Biochem 6:2171–2182

    Article  Google Scholar 

  33. Qi JR, Zhao DR, Zhao L et al (2021) MiR-520a-3p inhibited macrophage polarization and promoted the development of atherosclerosis via targeting UVRAG in apolipoprotein E knockout mice. Front Mol Biosci 7:621324

    Article  PubMed  PubMed Central  Google Scholar 

  34. Robichaud S, Fairman G, Vijithakumar V et al (2021) Identification of novel lipid droplet factors that regulate lipophagy and cholesterol efflux in macrophage foam cells. Autophagy 11:3671–3689

    Article  Google Scholar 

  35. Shen Z, Sun J, Shao J et al (2020) Ultraviolet B irradiation enhances the secretion of exosomes by human primary melanocytes and changes their exosomal miRNA profile. PLoS ONE 15(8):e0237023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the Nature Science Foundation of Heilongjiang Province (No. LH2020H137).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, related experiments, data collection and analysis were performed by HG, GB and LZ. The first draft of the manuscript was written by XL and LS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaofei Liang.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript. The authors have no relevant financial or non-financial interests to disclose.

Research involving in human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Guo, H., Shen, L. et al. Dual effect of ultraviolet B on cholesterol efflux and regulated by ultraviolet radiation resistance-associated gene-mediated autophagy. Mol Biol Rep 49, 11755–11763 (2022). https://doi.org/10.1007/s11033-022-07941-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07941-w

Keywords

Navigation